
0018-9162/00/$10.00 © 2000 IEEE July 2000 57

R E S E A R C H F E A T U R E

Using Paths to
Measure, Explain,
and Enhance
Program Behavior

W
hat happens when a computer program
runs? The answer can be frustratingly
elusive, as anyone who has debugged
or tuned a program knows. As it runs,
a program overwrites its previous state,

which might have provided a clue as to how the pro-
gram got to the point at which it computed the wrong
answer or otherwise failed. This all-too-common
experience is symptomatic of a more general prob-
lem: the difficulty of accurately and efficiently cap-
turing and analyzing the sequence of events that occur
when a program executes.

Program paths offer insight into a program’s
dynamic behavior that is difficult to achieve any other
way. Unlike simpler measures such as program pro-
files, which aggregate information to reduce the cost
of collecting or storing data, paths capture some of
the usually invisible dynamic sequencing of state-
ments. Examination of programs’ paths has unveiled
a striking degree of path locality, which the computer
architecture and compiler communities have prof-
itably exploited to increase program performance.

Paths are useful at another level: as a convenient
abstraction for reasoning about a program’s runtime
behavior. The compiler, debugging, and testing research
we describe in this article builds on this abstraction.
This work exploits the insight that program statements
do not execute in isolation, but are typically correlated
with the behavior of previously executed code.

HOW PROGRAM PATHS WORK
A program path records a program’s executable

statements in the order in which they run. For exam-
ple, consider a simple function to add the even nat-
ural numbers from 1 to N:

int AddEvenNumbers(int N)
{
int sum = 0;
/* S1 */
for (int j = 1; j <= N; j += 1) {

/* S2 */
if ((j % 2) == 0) {

/* S3 */
sum += j

}
}
/* S4 */
return sum;

}

When invoked with an argument of 3, this function
executes the path S1, S2, S1, S2, S3, S1, S2, S1, S4.

This type of path, which is also known as an instruc-
tion or statement trace, is unwieldy and difficult to
manipulate for two reasons: first, its length is propor-
tional to how long a program runs and, second, it must
be read sequentially, like a magnetic tape. Computer
architects use instruction traces to simulate processor
designs, but most others found that the cost of collect-
ing and recording a full instruction trace outweighed its
utility.

Program profiles
Program profiling, a widely used substitute for paths,

captures which statements execute, but not the order
in which they run. Since a profile only records state-
ment executions, it can be compactly summarized as a
table of execution frequencies. The preceding exam-
ple’s program profile is S1 = 4, S2 = 3, S3 = 1, S4 = 1.

Paths can reveal a program’s dynamic behavior and uncover patterns of
path locality that can be exploited to increase program performance. The
authors explore several methods for doing so.

Thomas Ball
James R. Larus
Microsoft Research

58 Computer

Compact and inexpensive to collect, profiles help
identify heavily executed code but provide little insight
into a program’s dynamic behavior. The profile of the
sample program, for example, does not capture the
loop iteration in which statement S3 executes.

Acyclic path segments
A practical compromise between these two extremes

breaks a full program path into shorter segments, each
of which fully captures the program’s control flow for
a portion of its execution, then profiles the segments.
Because program loops introduce an unbounded num-

ber of potential path segments, naming individual
paths can be difficult. To overcome this obstacle, we
identified a tractable set of segments—intraprocedural,
acyclic paths—that consist of the longest paths within
a function that do not traverse a loop’s back edge.
Because programs contain only a finite number of these
paths, each one can be identified and named.
Moreover, they can be profiled efficiently. The sample
program, for example, contains three acyclic paths:
P1: S1 → S2, P2: S1 → S2 → S3, and P3: S1 → S4. The
profile for these paths is P1 = 3, P2 = 1, and P3=1.

Acyclic path segments offer two benefits. First, they

We developed a simple method to
record a significant portion of the path
executed by a program.1 Our technique
records path spectra consisting of
intraprocedural, acyclic paths. A path is
intraprocedural if it is contained entirely
within one procedure. A path is acyclic if
it does not contain a cycle, in which con-
trol returns to a point for a second time.
These cycles are introduced by loops or
by recursion. They cause problems
because unbounded iteration makes the
set of potential paths unbounded, as each
loop iteration extends a path.

Unbounded sets are difficult to represent
and manipulate, so we focused on intrapro-
cedural, acyclic paths that do not cross a
loop’s back edge. The number of such paths
is bounded by the graph’s size, although the
bound is exponential in the worst case, as
in Figure 7a. These acyclic paths fall into
four categories: a path from the

• procedure entry to the procedure’s
exit,

• procedure entry to a loop’s back
edge,

• head of a loop to a loop’s back edge,
or

• head of a loop to the procedure’s
exit.

Our profiling technique adds code
along some edges in a procedure’s control-
flow graph (CFG). This code adds spe-
cially selected values into an accumulator.
When control reaches either a loop’s back
edge or a procedure’s exit, the value in this
accumulator uniquely identifies the acyclic
path executed by the procedure.

This value can be recorded, and the
accumulator reset to record the next path
executed by the procedure. For example,
Figure A contains the annotated CFG of
the AddEvenNumbers procedure and
shows the path numbers computed by the
instrumentation code. In general, our
algorithm guarantees that every acyclic
path will be represented by a unique inte-
ger value. Further, the algorithm computes
the most compact encoding possible.

In Figure A, the six acyclic paths’ values

range from 0 to 5. The overhead cost of this
form of profiling can be very low because
most instrumentation simply increments a
counter by a constant value. Most of the
profiling expense comes from recording the
executed paths in an array or hash table.

Reference
1. T. Ball and J.R. Larus, “Efficient Path Profil-

ing,” Proc. 29th Ann. IEEE/ACM Int’l Symp.
Microarchitecture, IEEE CS Press, Los Alami-
tos, Calif., 1996, pp. 46-57.

AddEvenNumbers

sum = 0
j = 1

2

j <= N? 3

return sum 7

(j % 2) == 0? 4

sum += j 5

j + 1 6

acc += 1; acc += 2;

acc = 3;

record acc

record acc
acc = 0;

3, 4, 5, 6
3, 4, 6
3, 7
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 6
1, 2, 3, 7

0
1
2
3
4
5

Value
in acc

Path 1

Figure A. Path profiling code for the AddEvenNumbers function. The code along the edges com-
putes unique numbers for each acyclic path in the function.

Efficient Path Profiling

concisely and efficiently capture the execution history
of many instructions, and so record at least part of a
program’s dynamic control flow. Second, control local-
ity of acyclic paths is even more pronounced than code
locality in the program as a whole. Code locality is typ-
ified by the 80-20 rule: Eighty percent of a program’s
execution occurs in only 20 percent of its code. In con-
sidering paths, the 80-20 rule becomes the 100-0 rule
because a program executes only a miniscule fraction
of the potential paths through the nearly infinite maze
of its flow graph. The 80-20 rule reappears, however,
within the domain of executed paths, as a program
spends most of its time in only a few hot paths.

Hot paths, which can account for 90 percent of a
program’s executed instructions—and similar fractions
of instruction stalls, cache misses, and so on—are a
natural focus of processor and compiler research and
the primary way in which paths have helped improve
program performance. Programs’ high path locality
helps simple hardware devices, such as branch predic-
tors, dynamically predict a program’s future behavior
with high accuracy. Similarly, a path profile helps a
compiler statically predict a program’s expected behav-
ior, which enables more precise program analysis and
facilitates optimization decisions.

On the other hand, paths have not yet led to
improvements in software development, although sev-
eral directions look promising. The information that
paths compactly record about a program’s dynamic
behavior can be useful in finding program bugs.
Preliminary work in this area has shown that com-
paring paths executed in two program runs can isolate
code that behaves differently with distinct values, such
as dates before and after the year 2000. Unfortunately,
paths also point to a major weakness in program test-
ing, as it is difficult to force programs to exercise a sig-
nificant fraction of their paths, any of which may
contain unseen bugs. One promising idea, however,
involves the software equivalent of “design for testa-
bility,” in which code is written to increase the ratio
of tested to potential paths.

In this article, we use a series of examples from sev-
eral computing areas to show the benefits of thinking
about program behavior in terms of paths.

PATH MEASUREMENTS
Researchers1,2 have developed an efficient technique

for recording the acyclic paths executed by a program
and capturing cost metrics along these paths, as
described in the “Efficient Path Profiling” sidebar. To
demonstrate their tool, they measured the SPEC95
benchmarks and found unexpected program behav-
ior. For example, Figure 1 shows the cumulative dis-
tribution of instructions executed along paths in the
integer SPEC95 benchmarks. The floating-point
benchmarks have similar distributions but fewer dis-

tinct paths. Programs cluster into two distinct groups.
The first group, which includes programs other than
go and gcc, executes 90 percent of its instructions
along 10 to 100 distinct paths. The other group (go
and gcc) executes only 40 to 50 percent of its instruc-
tions along the top 100 paths and requires approxi-
mately 1,000 paths to reach the 90th percentile. The
behavior of these two programs—the largest and most
computationally interesting SPEC benchmarks—
approaches that of commercial software.

In commercial programs, even a thousand paths
constitute an insignificant and quite manageable frac-
tion of all potential paths. Accurately computing the
number of potential acyclic paths in a program is dif-
ficult, as this value quickly exceeds the capacity of 32-
bit or even 64-bit integers. Many, or perhaps even
most, of these potential paths may be computation-
ally infeasible. This amazing amount of control local-
ity provides computer architects with a practical basis
for improving program performance.

COMPUTER ARCHITECTURE
Since programs execute few distinct paths, knowl-

edge of which path a program is executing aids com-
puter hardware in predicting a program’s future
behavior. To make these predictions, the hardware
must track previously executed paths and recognize
enough of the current path prefix to predict the
remainder of the path.

Branch prediction
As a concrete example, consider hardware branch

prediction, which attempts to predict the target of a

July 2000 59

Number of paths

Ex
ec

u
te

d
 in

st
ru

ct
io

n
s

(p
er

ce
n

t)

0

20

40

60

80

100

120

1 10 100 1,000 10,000 100,000

Number of paths

**099.go
**124.m88ksim
**126.gcc
**129.compress
**130.li
**132.ijpeg
**134.perl
**147.vortex

Figure 1. Cumulative distribution of instructions along paths in SPEC95 integer bench-
marks. The chart shows the smallest number of paths along which a program executes
a given percentage of its instructions.

60 Computer

conditional branch before it executes so that target
instructions can be fetched early enough to avoid
stalling a processor’s pipeline.

Early branch predictors treated each branch in iso-
lation. They recorded the outcome of a branch and
used its history to predict whether the branch would be
taken next time. Figure 2 shows a commonly used
approach, which maintains a branch history table that
contains two-bit counters to predict branch outcomes.
The low-order bits of a branch’s memory address index
the table. The two-bit saturating counter records the
outcome of the branch’s previous executions. Ignoring
addressing collisions, in which several branches unin-
tentionally share a counter, each counter operates as a
finite-state automaton that predicts a branch will have
the same outcome as its previous executions.3

More recently, correlated or two-level adaptive
branch predictors have exploited path locality to
improve the accuracy of branch prediction. These
branch predictors are widely used in high-perfor-
mance processors such as the Compaq Alpha and Intel
Pentium III. Correlated predictors also use two-bit
counters to predict a branch outcome. However, the
counter that makes a prediction is selected by a com-
bination of the branch’s address and the history of a
few previous executed branches, which approximates
the path leading to the branch.4

This series of branch outcomes may not uniquely
identify the executed path, as several paths leading to
an instruction can share a tail of identical branch out-
comes. Nevertheless, the approximation is good
enough to enable these predictors to reduce branch
mispredictions from 10 to 15 percent down to 5 to 10
percent. We can attribute this improvement to the
increased predictability of a branch along a single path,
as compared to its aggregate behavior along all paths.5

Trace cache
Eric Rotenberg, Steve Bennett, and James Smith’s

trace cache makes clearer the connection between pro-
gram paths and high-performance hardware.6 A trace
cache, by explicitly recording and fetching program
paths, stores instructions in the order in which they
execute. Trace caches improve cache memory utiliza-
tion by only storing executed instructions. They also
improve instruction fetching because a single cache
access may provide a processor with instructions from
several, noncontiguous basic blocks. Trace caches are
practical because programs execute relatively few dif-
ferent paths and effective because programs heavily
execute a small subset of these paths.

COMPILERS
Program paths have also proven useful in formulat-

Branch history table

Predict
taken

Predict
taken

2-bit counter

Predict
taken

Taken

Taken
Taken

Taken

x
add $r1, $r2, $r3
sub $r7, $r5, $r,
sub $r3, $r4, $ r17
bne $r17, Ox7f8acd

Processor pipeline

Execute RetireFetchI-Cache

Predict
taken

Figure 2. Branch his-
tory table. A branch’s
address is hashed
into a table, which
contains a 2-bit satu-
rating counter that
predicts if the branch
will be taken, based
on its past few
outcomes.

ing effective compiler algorithms for optimizing pro-
grams. Compilers must always strive to balance the twin
goals of correctness and efficacy, which leads compiler
writers to adopt two contradictory perspectives on pro-
gram paths. To ensure that an optimization does not
change a program’s semantics, compiler analysis takes
an egalitarian perspective, which treats all potential exe-
cution paths equally, even those that rarely or never exe-
cute. On the other hand, effective optimization demands
a meritocracy in which a compiler’s resources are spent
identifying and improving heavily executed code. From
this perspective, paths are not equally valuable or inter-
changeable, as some offer far larger opportunities to
improve program performance than do others.

Trace scheduling
Nowhere is this contrast clearer than in trace sched-

uling, one of the earliest uses of program paths.7 This
compilation technique schedules instructions along a
heavily executed path as if they executed in a single
basic block, as shown in Figure 3. Larger blocks
increase a scheduler’s opportunities to move instruc-
tions around, both to hide operation and memory
latency and to effectively utilize a processor’s multi-
ple functional units. Program correctness, however,
requires fix-up code for paths that partially overlap a
trace—by transferring control into and out of the
scheduled instructions—to compensate for the side
effects of reordering instructions.

In practice, the fix-up code significantly increases
program size. Nevertheless, several high-performance
compilers use this method, and improvements and
extensions of the basic idea underlie many scheduling
techniques for superscalar processors.

Path-based optimization
Recent compiler algorithms have looked to paths

to provide a method for untangling a program’s con-
trol flow and for performing localized and profitable
optimizations. For example, Frank Mueller and David
Whalley show that duplicating code to separate over-
lapping paths can expose redundant operations.8 To
illustrate this idea, consider the simple example:

for (x = 0, i = 1; i < 100; i ++)
if (x != 0){

print (i / x);
}
else {

if (f(i)) {
x = i;

}
}

By separating the two paths through the innermost
conditional, the outer conditional can be eliminated:

for (x = 0, i = 1; i < 100; i ++)
if (f(i)) {

x = i;
break;

}

for (; i < 100; i ++)
print (i / x);

This optimization is difficult to express in conven-
tional compiler terms—without paths—because it
depends on recognizing that the original loop’s body
contains three paths that execute in a fixed order:

1. through the print statement,
2. through the assignment statement, and
3. through the missing alternative of the nested con-

ditional.

The third path executes zero or more times, then the
second path executes once, and only then does the first
path execute zero or more times. Conventional pro-
gram analysis aggregates all paths through the loop
to find properties that hold regardless of how execu-
tion arrived at a point. From this perspective, little
can be done with this loop, as the definition and use
of the variable x prevents code motion.

Program analysis
Another area in which paths have proven useful is

program analysis. Compilers traditionally analyze pro-
grams using dataflow analysis, which emphasizes cor-
rectness rather than precision, since it assumes that all
paths are equally likely to execute. Dataflow analysis
propagates a collection of values, which represent rela-
tions that hold when a program executes, along all
paths in a program’s control flow graph. The analysis

July 2000 61

A
C
D
G

B

A

B

E

F

A
C
D
G

✹ ✹

✹

✹

✹
✹

Compile off-trace
and fix-up code

Baz

D

G

E

C

F

Compile code along
trace (path)

Exit

Figure 3. Trace sched-
uling first optimizes
and compiles the code
along a hot path
(shown in red), called
a trace, then goes
back and adds com-
pensation code where
control flows into or
out of the trace.

62 Computer

updates these values to reflect the effects of statements
along a path. Since the number of potential paths is
unbounded, dataflow analysis does not maintain indi-
vidual values along any path. Instead, at every point
at which two or more paths come together, flow analy-
sis merges their values into a common result that holds
for all paths reaching the merge point. The resulting
value is correct for all paths but, like a committee’s
consensus, may not be the most specific or useful result.

Figure 4 contains a simple example that shows how
flow analysis introduces imprecision. The variable x
has the value 1 along the hot path in Figure 4.
However, dataflow analysis combines other values for
x—in this case, 2—that reach blocks along this path.
Thus a conventional compiler analysis would not
detect that the variable is constant along the hot path.
As this example shows, decreased analytical precision
can prevent a compiler from optimizing code along a
hot path, even if the program rarely or never executes
other paths that degrade the analysis.

To address this problem, Glenn Ammons and James
Larus introduced path-enhanced flow analysis that
increases the precision of flow analysis along a pro-
gram’s hot paths.9 Before applying dataflow analysis,
this technique duplicates a routine’s hot paths, then
performs flow analysis in the conventional manner on
the resulting augmented flow graph. The analysis is as
precise as possible along the hot paths, given that no
other paths merge with these paths. Duplicating hot
paths increases the program’s size, however. So, as a
final step, this technique examines the analytical results
for the hot paths to see if these results are more pre-
cise than those for the original, unduplicated paths. If
duplication did not sufficiently increase the precision
along a hot path, the duplicate is folded back into the
original path.

Path-guided optimization
Path frequencies can also aid a compiler in making

trade-offs among various optimization strategies. For
example, Rajiv Gupta, David Berson, and Jesse Fang
showed that path profiles could guide elimination of
partially dead code.10 An expression is dead at some
point in a program if its value will not be used subse-
quently along any path. Dead expressions without side
effects should be deleted, both to save code space and
prevent wasted computation. An expression is par-
tially dead if it will not be used along some paths lead-
ing from a point. A partially dead expression can
sometimes be moved so that it executes only along the
paths in which its value is needed. Without path pro-
files, a compiler must be conservative to avoid moving
an expression where it would be more heavily exe-
cuted. For example, Figure 5 contains two scenarios
that cannot be distinguished with conventional block
or edge profiling. In the first, moving the partially dead
expression (a + b) does not increase its execution fre-
quency, while in the second scenario, the expression is
evaluated far more often after optimization.

DEBUGGING
Program paths underlie the debugging process,

although conventional debuggers do not directly sup-
port them. Programmers spend part of the debugging
process answering the questions, “How did the pro-

x = <-2

x = <-1

x = 1?

{x = 1}{x = 1}

{x = 2}

{x = ?}

{x = 1}

Figure 4. Dataflow analysis introduces imprecision. Along
this control flow graph’s hot path, shown in red, the variable
x has the value 1. Another path merges into this path, how-
ever, introducing the value 2 for x. As a result, conventional
dataflow analysis does not detect the constant value along
the hot path, which may prevent the compiler from properly
optimizing this important code section.

6:5: x<-…

7: …<-x

3:2: x<-a+b

1: p?

4:

1-2-4-6-7
1-3-4-5-7

100
100

FrequencyPath
Beneficial to move

1-2-4-5-7
1-3-4-6-7

100
100

FrequencyPath

Not beneficial
to move

Figure 5. Path-guided optimization. The expression (a + b) should be moved from block
2, where it is partially dead, to block 6, if it is not evaluated more at block 6 than it was
at block 2. The path profiles illustrate two scenarios in which moving the partially dead
expression is either beneficial or detrimental.

gram get here?” or “What happened when the pro-
gram ran?” Because paths can help answer such ques-
tions, many researchers have tried to improve
debugging by making debuggers more path sensitive.

Path expressions
Some work has investigated mechanisms for rea-

soning about program executions at the path level.
Path expressions are regular expressions, over an
alphabet of control flow entities such as statements or
procedures, that give a programmer a path-based
query facility for directing the debugging process.11

For example, consider the path expression Open
(Read | Write)* Close, which captures the nor-
mal sequence of operations on a file.

The instructions Open, Read, Write, and Close rep-
resent calls on an I/O library. This regular expression
can be compiled into a finite-state machine that
accepts only strings in its language. As a program exe-
cutes library calls, a debugger can step through the
finite-state machine. Upon reaching a rejecting or
accepting state, the debugger can take further action,
such as raising an error or reporting that the path
expression has been satisfied.

Path spectra
A program’s path spectrum is the collection of

acyclic paths executed in a program run. Although the
path segments cannot be stitched back into a single
path, comparing spectra from different executions of
a program can identify places in which the program’s
behavior varies with its input. Thomas Reps and col-
leagues showed that path spectra could help locate
code that may be date dependent.12 By using input
data sets that share all values except one, differences
in a program’s spectra can be attributed to the changed
value. For example, suppose program P has input I,
which contains a date before the year 2000. Running
program P on I yields path spectrum S. Now, perturb
input I by modifying the pre-2000 date to a post-2000
date, to yield input I′. Running program P on I′ yields

path spectrum S′. The differences between path spec-
tra S and S′ highlight changes in the program’s behav-
ior, which might illuminate Y2K errors.

Figure 6 contains a small example that illustrates this
approach.12 The sample program reads three pieces of
data about a person: byear, the person’s birth year; col-
lege, a Boolean value that indicates the person gradu-
ated from college, and items, the number of items the
person has purchased. The program calculates the age
of the person and then performs various actions (B, C,
D, E, F and G). Dates are represented by the last two
digits of the year—thus, 1998 appears as 98. We denote
each of the eight paths by its actions; so BDF represents
the path in which each predicate evaluates true.

The table in Figure 6 shows two path spectra, one
from a pre-2000 run in which the function current
_date returns 98, and one from a post-2000 run in
which the function current_date returns 01. In the pre-
2000 run, the path BDF does not execute because the
database does not contain any people under the age of
15 who have completed college. However, in the post-
2000 run, this path executes because the age variable
becomes negative.

TESTING
Program paths also form a key part of the program

testing process, both in assessing test coverage and in
automating test generation.

Path coverage
Test coverage evaluates the adequacy of a program-

test-case collection by measuring which parts of a pro-
gram the collection tests. The most widely used
coverage metrics quantify the fraction of statements
and branches that execute when the tests run. Path
coverage is a far more problematic criterion. Programs
contain a finite number of statements and branches,
but in general, because of loops, can execute an infinite
number of paths. Even if we consider only acyclic
paths, the number of possibilities is huge. Further,
many paths may be infeasible because no inputs could

July 2000 63

byear = read();
college = read();
items = read();
age = current_date() - byear;
if (age < 15) { B } else { C }
if (college) { D } else { E }
if (items) > 3) { F } else { G }

Run Path

Pre-2000
Post-2000

BDF BDG BEF BEG

•

CDF CDG CEF CEG
• • • • • •

• • •

Figure 6. Example showing how path spectra help expose Y2K problems.

64 Computer

satisfy the predicates along them. Nevertheless, path
coverage can be a useful test criterion for small, highly
critical code regions. For example, consider the fol-
lowing code fragment:

if ((A||B) && (C||D)) {
X

} else {
Y

}

This fragment contains two statements (X and Y),
four tests (A, B, C, and D), and seven paths—four in
which the predicate evaluates true and three in which
the predicate evaluates false. Executing only two of
seven paths achieves full statement coverage. If only
these two paths are feasible, some predicate subex-
pressions are unreachable and the expression could
be simplified. Achieving full branch coverage requires
executing four paths. The other three paths, if feasible,
could possibly reveal unexpected interactions among
the tests or might be redundant tests.

Another approach to testing coverage focuses on
paths that seem likely to reveal a fault. Consider a path
that contains an assignment to variable x, but no use
of the variable. Such a path is less likely to reveal a fault
in the computation of x’s value than a path that assigns
and then uses x. This observation motivated a large
family of dataflow, path-based coverage criteria.13

Automated test-case generation
In debugging, a crucial question arises: “Which path

did program execution follow to this point?” An anal-
ogous question for testing follows: “Which path can
program execution traverse to this point?” To test a par-
ticular piece of code, a tester must find a program input
that causes the code to execute. One approach identi-

fies a path to the code, then tries to determine an input
to the program that will cause the path to execute.

This simple formulation conceals a host of nasty
problems. First, the chosen path may be infeasible, so
no input can cause the path to execute. Second, find-
ing an input that causes a program to execute a given
path is an undecidable problem. Despite—or perhaps
because of—these considerable difficulties, much
research has explored the area of automated test-case
generation.

Consider the following example, which counts how
many of three variables have positive values, then
prints the count if it is equal to three:

x = read(); y = read(); z = read();
count = 0;
if (x > 0) count++;
if (y > 0) count++;
if (z > 0) count++;
if (count == 3) printf("count = 3");

Suppose we wish to find a path that causes the call
to printf to execute. Only one such path exists, and
the precondition for its execution is that the three
input variables all have a positive value. In this exam-
ple, each of the three predicates tests an independent
variable, so each predicate branch is independent of
the others. In general, however, predicates will be
dependent on one another, which greatly complicates
the automated generation of input. Techniques such as
symbolic execution and theorem proving, both very
expensive, are needed to make the inferences neces-
sary to determine if a path is feasible.14

SOFTWARE COMPLEXITY AND
PROGRAM UNDERSTANDING

Program paths also offer a new perspective on soft-
ware complexity.15 Nearly all software complexity
metrics count entities immediately apparent in a pro-
gram. For example, the well-known McCabe cyclo-
matic complexity measure16 counts the number of
decision points—either branches or predicates.

As the two control flow graphs in Figure 7 demon-
strate, however, structural relationships among pred-
icates strongly influence the number of paths through
code. Figure 7a contains three predicates—A, B, and
C—and eight paths. Figure 7b also contains three pred-
icates, but only four paths. The McCabe complexity
of both procedures is 5, but the complexity of under-
standing and testing the two procedures differs greatly.
In general, given N binary predicates, a procedure can
contain anywhere from N + 1 paths, when the predi-
cates are nested N-level deep, as in Figure 7b, to 2N

paths, when the predicates are strung out in sequence.
Each path represents a potential execution scenario

that a programmer may need to consider when under-

A

B

C

A

B

C

23 paths 3 + 1 paths

(a) (b)

Figure 7. Two proce-
dures with the same
number of predicates
and branches, but dif-
ferent numbers of
paths.

standing or testing the code. For this reason, the num-
ber of paths through a procedure provides a better
metric of a procedure’s complexity than a simple count
of branches or statements. As usual, feasible and infea-
sible paths complicate the picture. Recall the example
of the counting code. That code contains 16 potential
paths. The first three predicates are independent of
each other, so eight feasible paths run through the first
three statements. The predicate in the last statement,
which checks if count is 3, is dependent on the first
three predicates because if any of them evaluates false,
count will not be 3 and the final predicate will evalu-
ate false. This dependency means that eight feasible
paths run through the four statements. Despite its path
complexity, the code is relatively simple to understand
because of the first three branches’ independence.

In the compiler, debugging, and testing fields, pro-
gram paths are coming into use and much work
remains. Path profiling techniques need to be

extended beyond acyclic paths to efficiently capture
longer paths that cross procedure and loop boundaries.

These areas, and others, would benefit from a more
detailed understanding of infeasible paths. Such work
could help develop algorithms for distinguishing those
that are easily identified and ignored from the
intractable remainder. More generally, further work
may help clarify the connection between complex or
unreliable code and path complexity. ✸

Acknowledgments
We thank Daniel Weise and David Tarditi for pro-

viding many helpful comments.

References
1. G. Ammons, T. Ball, and J.R. Larus, “Exploiting Hard-

ware Performance Counters with Flow and Context
Sensitive Profiling,” Proc. SIGPLAN 97 Conf. Pro-
gramming Language Design and Implementation, ACM
Press, New York, 1997, pp. 85-96.

2. T. Ball and J.R. Larus, “Efficient Path Profiling,” Proc.
29th Ann. IEEE/ACM Int’l Symp. Microarchitecture,
IEEE CS Press, Los Alamitos, Calif., 1996, pp. 46-57.

3. J.E. Smith, “A Study of Branch Prediction Strategies,”
Proc. Eighth Ann. Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1981, pp. 135-148.

4. T.-Y. Yeh and Y. Patt, “A Comparison of Dynamic Branch
Predictors that Use Two Levels of Branch History,” Proc.
20th Ann. Int’l Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 1993, pp. 257-265.

5. C. Young, N. Gloy, and M.D. Smith, “A Comparative
Analysis of Schemes for Correlated Branch Prediction,”
Proc. 22nd Ann. Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1995, pp. 276-286.

6. E. Rotenberg, S. Bennett, and J.E. Smith, “Trace Cache:
A Low Latency Approach to High Bandwidth Instruc-
tion Fetching,” Proc. 29th Ann. IEEE/ACM Int’l Symp.
Microarchitecture, IEEE CS Press, Los Alamitos, Calif.,
1996, pp. 24-34.

7. J.A. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction,” IEEE Trans. Computers, Vol.
C-30, No. 7, 1981, pp. 478-490.

8. F. Mueller and D.B. Whalley, “Avoiding Unconditional
Jumps by Code Replication,” Proc. SIGPLAN 92 Conf.
Programming Language Design and Implementation,
ACM Press, New York, 1992, pp. 322-330.

9. G. Ammons and J.R. Larus, “Improving Data-Flow
Analysis with Path Profiles,” Proc. SIGPLAN 98 Conf.
Programming Language Design and Implementation,
ACM Press, New York, 1998, pp. 72-84.

10. R. Gupta, D.A. Berson, and J.Z. Fang, “Path Profile
Guided Partial Dead Code Elimination Using Predica-
tion,” Proc. Int’l Conf. Parallel Architecture and Com-
pilation Techniques (PACT), IEEE CS Press, Los
Alamitos, Calif., 1997, pp. 102-115.

11. B. Bruegge and P. Hibbard, “Generalized Path Expres-
sions: A High-level Debugging Mechanism,” J. Systems
and Software, Vol. 3, No. 4, 1983, pp. 265-276.

12. T. Reps et al., “The Use of Program Profiling for Software
Maintenance with Applications to the Year 2000 Prob-
lem,” Proc. Fifth ACM SIGSOFT Symp. Foundations of
Software Eng., M. Jazayeri and H. Schauer, eds., Springer-
Verlag, Berlin, 1997, pp. 432-449.

13. L.A. Clarke et al., “A Formal Evaluation of Data Flow
Path Selection Criteria,” IEEE Trans. Software Eng.,
Vol. 15, No. 11, 1989, pp. 1,318-1,332.

14. L.A. Clarke, “A System to Generate Test Data and Sym-
bolically Execute Programs,” IEEE Trans. Software
Eng., Vol. 2, No. 3, 1976, pp. 215-222.

15. B.A. Nejmeh, “NPATH: A Measure of Execution Path
Complexity and Its Applications,” Comm. ACM, Feb.
1988, pp. 188-200.

16. T. McCabe, “A Complexity Measure,” IEEE Trans.
Software Eng., Vol. 2, No. 4, 1976, pp. 308-320.

Thomas Ball is a researcher at Microsoft. His interests
include software tools, model checking, program
analysis, and domain-specific programming lan-
guages. Ball received a PhD in computer science from
the University of Wisconsin-Madison. Contact Ball
at tball@microsoft.com.

James R. Larus is a senior researcher at Microsoft. His
interests include programming languages, compilers,
parallel computation, and software tools. Larus
received a PhD in computer science from the Univer-
sity of California, Berkeley. Contact Larus at larus@
microsoft.com.

July 2000 65

