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ABSTRACT
Many important applications must run continuously and
without interruption, yet must be changed to �x bugs or up-
grade functionality. To date, no existing dynamic updating
system has achieved a practical balance between exibility,

correctness, ease-of-use, and low overhead.
We present a new approach that provides type-safe dy-

namic updating of native code in an extremely exible man-
ner (functions and types may be updated, and at any time)
and permits the use of automated tools to aid the program-

mer in the updating process. Our system is based around
dynamic patches made up of proof-carrying code that both
contain the updated code and the code needed to transition
from the old version to the new. We discuss how patches are
generated using a semiautomatic tool, how they are applied
using dynamic-linking technology, and how code is compiled

to make it updateable.
To concretely illustrate our system, we have implemented

a dynamically-updateable web server, FlashEd. We discuss
our experience building and maintaining FlashEd. Perfor-
mance experiments show that updateable FlashEd runs be-
tween 2% and 6% slower than a static one.

1. INTRODUCTION
Many computer programs must be \non-stop", that is, run
continuously and without interruption. This is especially
true of mission critical applications, such as telephone switches,
�nancial transaction processors, airline reservations and air
traÆc control systems, and a host of others. The increased
importance of the Internet and its link with the global econ-

omy has broadened needs and has made non-stop service
important to a larger range of less sophisticated users who
wish to run non-stop services such as e-commerce servers.
On the other hand, companies must be able to upgrade

their software to �x bugs, improve performance, or expand
functionality. In the simplest case, upgrades and bug �xes
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require the system to be shut down, updated, and then
brought back on-line. This, of course, is not acceptable for
non-stop applications, and at best may result in loss of ser-
vice and revenue, and at worst may compromise safety.
Thus, in general, non-stop systems require the ability to

update software without service interruption. Solutions to

this problem exist and are widely deployed. A common ap-
proach is to provide redundant hardware to support either
hot or cold standbys. Of course, this approach is expen-
sive and, perhaps worse, adds to the complexity of build-
ing applications. Much of the complexity comes from the
need for the standby to keep or gain the state maintained

by the running application. As an example, Visa makes
use of 21 mainframe computers to run its 50 million line
transaction processing system. This system is updated as
many as 20,000 times per year, but tolerates less than 0.5%
downtime [17]. Less sophisticated users do not have Visa's

resources, and seek simpler, but no less e�ective solutions.
We present an approach that enables software updates

at runtime that is both cheaper and less complex to use
than the above approaches. Our approach, dynamic soft-
ware updating, provides a framework for updating programs
as they run and it copes with transitioning state, even when

types within the programs change. This framework improves
dramatically over existing systems in several areas, includ-
ing correctness, exibility, ease-of-use, and low performance
overhead.
After stating the goals of our approach in x2, we describe

our updating framework in x3 and our implementation of

it using TAL [14] in x4. Our experience with a real-world
application, a dynamically-updateable web server, FlashEd,
is presented in x5. We then move on to a more in-depth
discussion of existing research and future directions before
concluding.

2. GOALS AND APPROACHES
What properties should a dynamic software updating sys-

tem have? Here, we present several important measures of
the practicality of an updating system. We will then briey
argue that existing systems do not satisfy all of the desired

properties (although we defer an in-depth discussion of re-
lated work to x6). Finally, we describe the major contribu-
tions of our system in terms of these same properties:

� Flexibility. Any part of a running system should be
updateable without requiring downtime.

� Correctness. A dynamic updating system should

promote or guarantee the correctness of updates: mal-



formed or otherwise incorrect updates should not cause

the running system to crash.

� Ease-of-use. Generally speaking, the less compli-
cated the updating process is, the less error-prone it

will tend to be. The updating system should therefore
be simple to use.

� Low overhead. Adding updating infrastructure to
a program should impact its performance as little as
possible.

2.1 Existing Approaches
Unfortunately, no single existing updating system has all of
the desired properties. Many systems have limited exibil-
ity, constraining their evolutionary capabilities [8]. For ex-

ample, dynamic linking is a well-known mechanism, but sys-
tems based upon dynamic linking [1, 18] may only add new
code to a running program, but cannot replace existing bind-
ings with new ones. Those systems that do allow updates
typically either limit what can be updated (e.g., only ab-
stract types [4], whole programs [6], or class instances [10]),

when the updates can occur (e.g., only when updated code
is inactive [4, 12, 19, 6]), or how the updates may occur
(e.g., functions and values must not change their types [10],
or changes to module and class signatures are restricted [12,
4]). These limitations leave open the possibility that a soft-
ware update may be needed yet cannot be accomplished

without downtime.
In many cases, it is diÆcult to know that the application

of an update will not cause a crash in itself. Some systems,
for example, break type safety [21, 10, 19, 6] or have only dy-
namic checking [2], or require potentially error-prone hand-
generation of complex patch �les [11, 4, 12, 19, 6, 2]. Others

rely on uncommon source languages or properties [11, 2] and
hence are not broadly applicable. Finally, some systems rely
on having interpreted code [12], which rules out their use-
fulness for various high performance applications (e.g., web
servers, transaction systems).

2.2 Our Framework
Our framework, dynamic software updating, avoids the need
for extra equipment and the high development costs of hot
and cold standbys. Furthermore, unlike previous systems,
it has all four of the above desired properties, in some cases
exceeding the current state-of-the-art.

Flexibility. Our system permits changes to programs at
a function granularity, and we permit the types of data and
functions to be updated. Updates are permitted to occur
at any time, even while the code being updated is active.
Our implementation is built with compiler and library sup-

port for a safe, C-like language, on top of standard dynamic
linking facilities, meaning it is applicable to other similar
languages.
Correctness. In our system, dynamic patches consist

of proof-carrying code [14, 15]. As a result, a patch cannot
crash the system or perform many illegal actions since it can

be proven to respect important safety properties, including
type safety. Our use of standard dynamic linking facilities
also means we have not expanded the trusted computing
base (TCB), which is the trusted part of the system upon
which the security of the entire system rests.
Ease-of-use. Construction of patches is largely auto-

mated, with the software development process remaining

static int num = 0;

int f(int a, int b) {

num++;

return a + b;

}

Figure 1: A �le f

new version f 0:

static int num = 0;

int f(int a, int b) {

num++;

return a * b;

}

state transformer S

void S () {

f'::num = f::num;

}

Figure 2: Dynamic patch for f : (f 0; S)

unchanged. When a new software version is completed, a
tool compares the old and new versions of the source �les
to develop patches that reect the di�erences. Although
total automation is undecidable, our tool can nonetheless
generate useful patch code for a majority of cases, leaving

placeholders for the programmer in the other (infrequent)
cases.
Low Overhead. Our system permits dynamic updat-

ing of native code, giving obvious performance bene�ts as
compared to interpreted systems like Java. Furthermore, in
practice, our updating infrastructure does not place an un-

due amount of overhead on an application.

In short, our approach provides type-safe dynamic updating
of native code in an extremely exible manner and permits
the use of automated tools to aid the programmer in the
updating process. No previous system achieves all of these

goals together.

3. FRAMEWORK
In this section, we discuss our general framework; details

about our implementation of a speci�c instance of this frame-
work are presented in x4. We assume an imperative source
language, using C-like code in the examples.

3.1 Dynamic Patches
Central to our approach is the idea of a dynamic patch;
namely, one that is applied to a running program. Dynamic

patches di�er from static patches, such as those created and
applied using the Unix programs diff and patch, because
they must deal with the state of the running program. We
can abstractly de�ne a dynamic patch of some �le f as the
pair (f 0; S), where f 0 is the new code and S is an optional

state transformer function, used to convert the existing state
to a form usable by the new code.
For example, consider the �le f shown in Figure 1. The

function f increments num to track the number of times it
was called and returns the sum of its two arguments. Sup-
pose we modify f to return the product of its arguments,

producing f 0. The dynamic patch that converts f to f 0 is
shown in Figure 2. The state transformer function S is triv-
ial: it copies the existing value of num in the old version f to
the num variable in the new version f 0. In general, arbitrary
transformations are possible.
Because patches apply to individual �les, rather than the

whole program, our de�nition is not yet complete. In partic-



  return bfunc();
}

int afunc() {

  return bfunc();
}

int afunc() {

A

int bfunc() {
  return 1;
}

B

indirection
table

A

indirection
table

B

int bfunc() {
  return 1;
}

After

Before

new B

int bfunc() {
  return 2;
}

Figure 3: Updating by reference indirection

ular, what happens when new code in f 0 rede�nes functions
in f to have a di�erent type? The problem is that existing
callers of f will still use the old type, meaning the patch has
introduced a type error in the program. One way to prevent
this is to simultaneously apply patches to correct the callers.
More generally, we can extend the notion of a patch to op-

tionally include stub functions to be interposed between old
callers and new de�nitions to get the types right.
Stubs are only useful for functions that change type; there

is no analogous construct for data. Thus, if a patch changes
the type of some global variable, then all the code that ref-
erences that data must be simultaneously changed, or else

there will be two versions of the same global variable. The
simplest case is when the global variable is not exported
from the �le (i.e. it is static), since only the functions in
the local �le itself must be changed.

3.2 Enabling Dynamic Patches
\Any problem in Computer Science can be solved
with another level of indirection." |attributed to
David Wheeler in Butler Lampson's 1992 ACM
Turing Award speech

Here, we consider what mechanisms our running programs
will need to support dynamic patches.

3.2.1 Code and Data Updates
Applying a patch requires that references to existing func-

tion calls and data be redirected to the stubs and new def-
initions in the patch. There are essentially two ways to do
this: either by rewriting or by indirection.
Rewriting allows the code to be compiled normally. At

update-time the running code is rewritten to refer directly to
appropriate parts of the patch. The advantage of rewriting is
that it allows normal compilation and incurs no runtime cost
except at update time. Instead of rewriting, our approach
uses indirection, as shown in the example in Figure 3. Here
we wish to perform an update to change bfunc, which is

referred to by afunc. Before the patch afunc refers to the

original bfunc through an indirection table, much like the

one used to support dynamic linking. Applying the patch
updates the indirection table to point to the bfunc de�ned
in the patch.
The main advantage of the indirection approach is that

it is simple to implement, but at the cost of a small perfor-
mance penalty. However, we feel that this penalty is justi�ed

for two reasons. First, we have measured it to be negligi-
ble in practice|see x4. Second, we note that widely-used
dynamic linking approaches, most notably ELF [21], also re-
quire an extra level of indirection for external references. In
fact, these indirections can be exploited to enable dynamic
updating for these systems, as described by [20] for a slightly

di�erent context.

3.2.2 Updating Type Definitions
If we wish to preserve type-safety, we need a way to upgrade
the type de�nitions as understood by the type-checker used
by the dynamic linker. Again, there are basically two ap-
proaches we could take: replacement or renaming. With re-

placement, applying the patch replaces the existing type def-
inition in the typechecking context with a new one. Newly
loaded code is checked against the new de�nition, implying
that to preserve consistency we must also convert any exist-
ing instances of the old type de�nition (whether in the heap,

stack, or static data area) to the new one. Furthermore, any
code that makes use of old type elsewhere in the program
must itself be replaced. One exception is in the case that
the type is abstract; then only the ADT must be replaced.
In contrast, we maintain a �xed notion of a type de�ni-

tion, and instead rely on the compiler to de�ne a new type

that logically replaces the old one, syntactically renaming
occurrences of the old name with the new one. When the
patch is applied existing instances of the old type are left
as they are; the state transformer function and/or the stub
functions in the patch can be used to convert old instances
at update-time or later if needed. The typechecking context

retains its de�nition of the old type and adds a new one for
the new type.
The bene�t of this approach is that no additional runtime

support is needed to replace old type instances; again we
can rely on standard dynamic linking support. The notable
drawback of this approach is that as time goes on, the num-

ber of type de�nitions maintained by the typechecker could
grow to be very large. It also requires a standard method
for renaming type de�nitions so that disconnected develop-
ers do not choose clashing names. This problem is simply
dealt with by taking the MD5 hash of the de�nition.

3.3 Building Updateable Systems
Now that we understand the mechanisms for building a
system that can have dynamic patches applied to it, two
key methodological questions remain. The �rst is how the
patches are generated. The second is how to structure our
system so that patches can be correctly applied, particularly

with respect to the timing of patch application.

3.3.1 Patch Construction Methodology
It should be easy for programmers to generate correct patches.
Furthermore, if possible, generating patches should not make
the normal process of code development substantially more
diÆcult.

Our approach to generating patches is simple. First, the



programmer develops and tests a new version of the code,

exactly as if he was going to statically compile and deploy
it. Next, our system automatically generates as much of
the patch �le as possible by comparing the source of the old
code to that of the new code. Finally, the programmer �lls
in the parts of the state transformer and stub functions that
could not be automatically generated.

A key bene�t of this approach is that software develop-
ment is separated from patch development. This is possible
because our notion of patch (and our implementation of it)
allows essentially arbitrary changes to the running program.
In many other systems, patches are limited to certain forms,
and so software development is similarly limited. For exam-

ple, in Dynamic C++ classes [10], changes are limited to
instance methods and data; static methods and data can-
not evolve. As a result, the process of generating patches is
tied to development, with the newest version of the software
having artifacts of the old version, such as useless �elds in
structures or additional copies of static data.

3.3.2 Automatic Patch Generation
A novel aspect of our approach is the (mostly) automatic

generation of patch �les. This feature was originally born
out of convenience: it is very tedious to write state trans-
lation and stub functions by hand. It has also proven in-
valuable in minimizing human error: it is less likely that
a necessary state translation or stub function will be acci-

dentally left out. As it turns out, a very simple syntactic
comparison of �les, informed by type information, can do a
good job of identifying most changes.
The job of the patch generator is twofold: identify changes

to functions and data, and when possible, generate appropri-
ate stub functions and state transformers. The identi�cation

algorithm is simple. First, both the old and new version of
the �le to patch are parsed and type-checked. Then, for
each de�nition in the new �le, the corresponding de�nition
is looked up by name in the old �le. In the case of type
de�nitions (i.e. struct or union declarations), the bodies
of the de�nition are compared and di�erences are noted. In

the case of value declarations, the bodies are also compared
syntactically, taking into account the di�erences in type def-
initions; in particular, the syntax of a function may remain
the same from the old to the new version, but the function
has actually changed if a type de�nition mentioned in the
body has changed.

After the identi�cation has completed, the state transla-
tion code is generated. For all global variables that remain
unchanged, an assignment statement is created from the old
to the new versions, like the one for num in Figure 2. For
those global variables that have changed type, appropriate

code is generated automatically, when possible. For exam-
ple, in the webserver we often change the type de�nition
httpd conn, which contains information about a pending
connection. All connections are stored in a global array of
httpd conns. In this case, the generator automatically in-
serts a loop that copies from the old to new array, calling a

type conversion function for each element, which is also gen-
erated automatically (to the extent possible), as explained
below.
The patch generator also generates default stubs for func-

tions that have changed type. Two basic modes are pos-
sible. In the simplest mode, the generator merely inserts

a statement that raises an exception. This is useful when

all patches for the running program are to be applied si-

multaneously. In this case no stub functions should ever be
invoked, so the exception signals an unexpected error. The
second mode is to automatically generate a call to the new
version of the function, �rst translating the arguments ap-
propriately, like the case depicted in Figure ??. Because we
have, to this point, only applied all patches simultaneously,

we have not yet implemented this mode, although it will be
straightforward.
During the identi�cation phase, the patch generator keeps

track of any type de�nitions that have changed, and gener-
ates new names for these types. The new name is determined
by taking the MD5 hash of the pretty-printed type de�ni-

tion (for uniformity). This allows development of patches
by multiple programmers without the worry of choosing in-
compatible type names.
Finally, type conversion functions are constructed to the

extent possible for data conversion from old to new versions
of a type, and vice versa. These are used by the state trans-

formation and stub code, as mentioned above. For struct
types, each �eld with an unchanged type is copied; each �eld
that is added is given a default value; and each �eld that has
changed type is translated. In the case that a translation
is not possible, a placeholder is left for the programmer to
�ll in the appropriate value. Currently we support transla-

tion between like types (i.e., int and float), and struct

and union types (by calling the appropriate type conversion
function).

3.3.3 When to Apply Patches
A critical component of assuring patch correctness is the
timing of an update. In particular, it is possible for a well-
formed update to be applied at a bad time, resulting in

incorrect state. For example, consider the �le f and its
patch, shown in Figures 1 and 2, respectively. Here the
patch state translation function S copies the current value
of num to the new version. The new code then uses this new
version of num. If this patch is applied while f is inactive
(that is, f is not currently running, and not on the stack

somewhere) then everything will be �ne. However, if (the
old version of) f begins execution just before the patch is
applied, it will increment the old version of num after it has
been copied by S. The result is the new version of num will
not reect the call of f.
Unfortunately, Gupta has shown that the problem of cor-

rect timing is, in general, undecidable [6]. Thus, in existing
systems, programmers must identify correct timing condi-
tions for a given patch, a task which typically must be done
by hand [11, 3] or with very limited automated support [6].
Furthermore, automatically enforcing these conditions re-

quires special runtime support [11] or restrictions to updat-
ing only inactive code [4, 12, 19], which still does not neces-
sarily guarantee that race conditions of the above sort will
not occur.
Instead, we observe that the problem of timing can be

greatly simpli�ed by requiring the program to be coded

from the outset so that updates are only permitted at well-
understood times. This transfers the timing enforcement
issue from run-time to compile-time: rather than assuming,
as past approaches do, that a program will not be aware that
it is updateable, and thus updates may conceptually occur
at any time, we instead require the program to be coded to

perform its own updating. Furthermore, not only can we



`eyeball' the code to determine an appropriate spot, we can

use the techniques of previous authors mentioned above to
determine one. The di�erence is that this spot is codi�ed
at software construction time, as opposed to speci�ed and
enforced at runtime.
As a result, we avoid the implementation complexity of

update timing enforcement, without losing the bene�ts of

correctness. The cost is that the systemmust be constructed
appropriately from the outset. However, given that the
clientele of dynamic updating systems already recognize the
need for updates, this is perfectly reasonable. Our own ex-
perience, and that of other updating systems, such as Er-
lang [2], indicate that this burden is not great, especially

compared to the complexity of hot and cold standbys.

4. IMPLEMENTATION
We have implemented our framework to target Typed As-
sembly Language (TAL) [14], using the source language Pop-
corn [13], a safe subset of C. Beginning with with a brief
introduction to TAL and Popcorn, this section presents the
details of our implementation. First, we describe how we im-

plement dynamic updating by reference indirection. Then
we explain how we de�ne and compile patch �les.

4.1 TAL and Popcorn
TAL is a cousin of proof-carrying code [15], a framework
in which native machine is coupled with annotations such

that a safety proof can be checked. A type-correct TAL
program is memory safe (i.e. no pointer forging), control-
ow safe (i.e. no jumping to arbitrary memory locations),
and stack-safe (i.e. no modifying of non-local stack frames)
among other desirable safety properties. TAL has been im-
plemented for the Intel IA32 instruction set; this implemen-

tation, called TALx86 [13], includes a TAL veri�er and a
prototype compiler from a safe-C language, called Popcorn,
to TAL.

4.2 Dynamic Updating
In previous work, we added a type-safe dynamic linker to

TALx86 [9]. Our current work extends that work to pro-
vide dynamic updating for Popcorn programs. We briey
describe the existing dynamic linker, and follow with the
changes we made to support dynamic updating.
The TAL dynamic linker consists of two parts, a trusted

part (written in C and OCaml), and a untrusted part, writ-

ten in Popcorn. The novelty of this linker is that almost
all of its functionality is written in Popcorn, and can thus
be proven type-safe. In particular, all of the functionality
related to linking and symbol management occurs within
the untrusted part; only loading and veri�cation occurs in

the trusted computing base. As a result, the linker is more
trustworthy.
All program �les (whether dynamically or statically linked)

are compiled so that their external references are indirected
through a local table called the global o�set table (GOT) in
the style of ELF dynamic linking [21]. At link time, the en-

tries in this table are resolved with the exported de�nitions
of the running program. These de�nitions are tracked by
the dynamic linker within a global dynamic symbol table. In
ELF, both the GOTs and the dynamic symbol table are a
trusted part of the object �le header, but in our system, they
are written in Popcorn. In particular, the GOT for each

loadable �le is constructed automatically via a source-to-

B

int bfunc() {
  return 1;
}

  return GOT.bfunc.1();
}

int afunc() {

GOT = { bfunc =  };

A

  return GOT.bfunc.1();
}

int cfunc() {

GOT = { bfunc =  };

C

symbol table
dynamic

Figure 4: Indirection via the Dynamic Symbol Table

  return GOT.bfunc.1();
}

int afunc() {

GOT = { bfunc =  };

A

  return GOT.bfunc.1();
}

int cfunc() {

GOT = { bfunc =  };

C

int bfunc(int a) {
  return 1+a;
}
int Stub::bfunc() {
  return bfunc(0);
}

symbol table
dynamic

B

int bfunc() {
  return 1;
}

old entry

new B

Figure 5: Following a dynamic update of B

source translation, and the dynamic symbol table is within
the untrusted part of the dynamic linker. As a result, the
indirection facility and the the process of linking can be

checked for type-safety.
To support dynamic updating, we modi�ed this basic ap-

proach as follows: �rst, rather than �lling each GOT entry
with its corresponding de�nition, we instead �ll it with that
de�nition's entry in the dynamic symbol table. This is il-

lustrated in Figure 4. Both afunc and cfunc indicate that
the bfunc �eld from the GOT structure should be extracted
(GOT.bfunc), dereferenced (GOT.bfunc.1), and �nally called
(GOT.bfunc.1()).
When a �le is updated, the old entry in the dynamic

symbol table is replaced with the new one, redirecting the

callers. In the case that the new function changed type and
there is a stub function, the old entry is removed from the
table, and redirected to point at the stub function. A new
entry is added to the table that points to the new function.
This is shown in Figure 5. Function b has been updated to
take an integer argument, and a stub function is included to

redirect the old callers. The old module B is now unreach-
able, and can be garbage-collected.1

In addition to this change, we required some other alter-
ations to make everything work:

1Unless it was actually being executed at the time of update;
in this case, it will be unreachable as soon as the PC leaves
the module.



� Rebinding. We can map symbols in the program to

di�erent names in the dynamic symbol table. This
allows us to replace function symbols with stubs that
do not have the exact same name.

� Customized linking order. This allows us to look up
existing table entries before they are overwritten.

� Exporting static variables. This allows state trans-
formers have access to all global state. To avoid name

clashes, we experimented with di�erent ways of modi-
fying local variable names. We settled on prepending
local variables with �lename::Local::.

Some additional points are important. First, the GOT
only stores references to externally-de�ned variables; refer-
ences to locally-de�ned variables are direct. This means that

only a subset of all function calls and data references made
by a program will have to pay the indirection penalty; we
present measurements of how signi�cant this is in x5. At
the same time, this approach essentially requires updates to
occur on the granularity of �les, rather than individual data
or procedures. Otherwise, the callers of an updated proce-

dure from the original �le would still call the old version.
We believe this tradeo� will signi�cantly reduce the cost of
indirections, while having only a small impact on exibility.
Second, our approach di�ers slightly from the abstract

approach outlined in x3:2; we use two indirections per ex-
ternal reference, rather than one. Using only one indirection

would require the dynamic symbol table to track, for each
symbol, all the addresses of GOT entries that point to its
value. Then, when the symbol is updated in the dynamic
symbol table, the new value would be propagated to all of
the local GOTs to reect the change. We do not use this
technique simply because Popcorn's & operator only works

on global variables, due to limitations of the TAL veri�er,
so there is no way to take the address of a GOT �eld to be
stored in the dynamic symbol table. However, we expect
the TAL implementation team to relax this restriction, at
which time we will optimize our implementation.

4.3 Patches
Our implementation of dynamic patches closely follows the
abstract description of x3:1. The contents of a patch are de-
scribed by a patch description �le containing four parts: the
implementation �lename, the interface code �lename, the

shared type de�nitions, and the type de�nitions to rename.
The �rst two �elds describe the patch: its implementation
in the �rst �le, and the state transformer and stub functions
in the second �le. The �nal two �elds are for type names-
pace bookkeeping. The shared type de�nitions are those

types that the new �le has in common with the old, while
the changed de�nitions are in the renaming list, along with
a new name to use for each. The compiler uses this infor-
mation to syntactically replace occurrences of the old name
with the new one.
As introduced in the state translation function of Figure 2,

we need a way to refer to di�erent versions of a variable
within the interface code �le. For a variable x, we may
wish to di�erentiate between the old version of x, the new
version of x, or the stub function for x. This is achieved
by prepending the variable references in the interface code
�le with New::, Old::, and Stub:: respectively. With no

pre�x, the reference defaults to the version available before

the patch was applied; this turns out to simplify how we

compile patch �les.
The patch �le is prepared for compilation by �rst convert-

ing it into a normal Popcorn �le, which is then compiled for
dynamic updating. The translation works as follows. First,
all de�nitions in the implementation �le whose variables are
in the sharing list are made into externs, which will resolve

to the old version's de�nitions at link time. Second, all of
the de�ned variables (non-extern) in the implementation
�le are pre�xed with New::. Third, the interface code �le
and the implementation �le are concatenated together. Fi-
nally, all the mappings from the renaming list are applied
to the �le's type names. The resulting �le is then compiled

to be loadable and updateable, as described in the previous
subsection.

5. THE FLASHED WEBSERVER
To demonstrate our system, as well as to further inform its
design and implementation, we developed a dynamically-
updateable webserver, based on the Flash webserver [16].
The original Flash consists of roughly 12,000 lines of C code

and is one of the highest performance web servers available
today. We call our server FlashEd for Editable Flash. We
use FlashEd to illustrate three points about our system: how
to construct an updateable application, how we constructed
and tested patches in practice, and the performance impli-
cations of our approach.

5.1 Building an Updateable Application
Flash's structure is well-suited to our requirements for up-
date validity. It is constructed around an event loop (in
a �le separate from that of main) that does three things.
First, it calls select to check for activity on client connec-

tions and the connection listen socket. Second, it processes
any client activity. Finally, it accepts any new connections.
Note that this kind of event loop is common in most server
applications.
Only two changes were needed to Flash to support dy-

namic updating. First, we added a maintenance command
interface. A separate application connects to the webserver
and sends a textual command with the �les to dynamically
load. After the select completes, a pending maintenance
command is processed and the speci�ed dynamic patches are
applied. Upon completion, the event loop exits back to main,

which then restarts the loop (thus reecting any change to
the �le containing the loop) and continues processing. Ex-
isting state is preserved between loop invocations.
The second change was in how errors were handled. Flash

contained many places where errors were detected and pro-
gram execution aborted by calling exit. Such aborts are

not acceptable in a non-stop program. We changed these
cases to throw an exception instead. The event loop catches
any unexpected exceptions, prints diagnostics, shuts down
existing connections, and restarts. If an exception is thrown
from a �le (module) that maintains state, that state is also
reset. Thus the program can continue service until it can

be repaired online, albeit with the loss of some information
and connections.

5.1.1 Patching
To gain experience evolving a program using our system,
we constructed FlashEd incrementally. Our initial imple-

mentation lacked some of the C version's features (such as
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Figure 6: Timeline of FlashEd updates

CGI and directory listings) and performance enhancements
(such as pathname translation caching and �le caching). We
added these features, one at a time, following the process
outlined in x3:3:1. Version two adds pathname translation

caching; version three adds �le caching; and version four,
still in progress, will add directory listings and CGI.
The changes between each version are non-trivial. A num-

ber of types change, including the structs de�ning HTTP
connections, �le information, and pathname translations;
and signi�cant functionality is added and modi�ed. Of the

original eighteen sources �les, eleven of them changed from
version one to two, and nine changed from two to three,
resulting in sixteen and fourteen patch �les, respectively.
The additional �ve patch �les in each case were as a re-
sult of changes to type de�nitions; no code in these �les
was changed, but the structure of data changed, requiring

recompilation.
Patch construction was relatively easy. The automatic

generator did most of the work, identifying which types and
code had changed and creating default patch and interface
code �les. For the version two patch, we modi�ed four patch
�les, adding or modifying a total of about 30 lines of code;

for version three we modi�ed �ve �les and added or changed
65 lines of code. These changes included initialization state-
ments for variables normally initialized by main and some
state translation code.

5.2 Experience
To simulate a production environment, we are running a
public server and attempting to never shut it down, making

all changes on-line. A brief chronology for FlashEd is shown
in Figure 6. We started version one at http://flashed.

cis.upenn.edu on October 12, 2000, to host the FlashEd
homepage. We applied patches for version two on October
20 and for version three on November 4. All patches were
tested o�ine on a separate server under various conditions,

and when we were convinced they were correct, we applied
them to the on-line server. Even so, we found a mistake
in the �rst patch|a ag had not been properly set|and
applied a �x on October 27. In addition, we applied roughly
�ve small patches for debugging purposes, such as to print
out the current symbol table.

Running the server has revealed which aspects of the sys-

tem work well and which do not. For instance, we learned

soon after we deployed the server that our version of the
TAL veri�er is buggy|it only checks a subset of all of the
basic blocks in loaded �les. Since the veri�er is part of the
trusted computing base, it cannot be updated. Ultimately
we must shut down the system and recompile it with the new
version. To accommodate these kinds of changes, we could

allow certain trusted code to be loaded without bene�t of
veri�cation.
We also made a human error when compiling the server:

we forgot to enable the exporting of static variables when
compiling the library code. This problem became apparent
when we attempted to dynamically update the dynamic up-

dating library. The library was not properly removing old
entries from the dynamic symbol table, and so we wanted
to patch the library to �x the problem, as well as clean up
the existing symbol table. However, since the symbol table
is declared static, it was not available for use by the patch.
As a result, any update to the library is e�ectively precluded

since the state cannot be properly transferred.
On the whole, however, the system has been extremely

easy to use. It has been particularly e�ective to be able to
load code to print out diagnostic information. For exam-
ple, on a number of occasions we loaded code that would
print out the dynamic symbol table (by calling an existing

function in the updating library) to make sure that sym-
bol names referenced in our patches, particularly the ones
chosen for static variables, matched the ones present in the
table. We also loaded code to print out the state of the
�le and translation caches, to make sure that things were

working.
Having the veri�er to check patches as they are being

loaded has been essential. For example, we tried to apply
some patch �les that were incorrectly generated; the imple-
mentation �le path mentioned in the patch description �le
was for an incorrect version. As a result, some of the type

de�nitions were incorrect, and this fact was caught by the
veri�er. Once we applied a patch whose state translation
function failed to account for null instances; the updating
library caught the NullPointer exception and rolled back
the changes made to the symbol table. Using an unsafe
language, such as C, would have resulted in our non-stop

system stopping with a core dump.

5.3 Performance Analysis
Adding dynamic-updating imposes a number of costs on
the system. At update-time, each patch must be veri�ed
and linked. However, this one-time cost is easily amortized
across the lifetime of the program. As for run-time costs,
each reference to global data outside of the referring �le

must go through two extra indirections. In this section, we
present the results of some experiments that measure these
costs.
Our experimental cluster is made up of four dual-300 MHz

Pentium-II's with split �rst level caches for instruction and
data, each of which is 16 KB, 4-way set associative, write-

back, and with pseudo LRU replacement. The second level
4-way set associative cache is a uni�ed 512 KB with 32-
byte cache lines and operates at 150 MHz. These machines
receive a rating of 11.7 on SPECint95 and have 256 MBs of
EDO memory. Each machine is connected to a single Fast
Ethernet (100 Mb/s), switched by a 3Com SuperStack 3000.

We run RedHat Linux 6.1, which uses Linux kernel version



20 clients
Webserver static updateable updated

FlashEd v1 50.1 48.3 n/a
FlashEd v2 49.9 48.5 49.2
FlashEd v3 52.2 51.2 51.7

100 clients
Webserver static updateable updated

FlashEd v1 70.6 66.5 n/a
FlashEd v2 72.7 69.2 70.6
FlashEd v3 84.5 82.5 83.1

Table 1: FlashEd Throughput (Mbits/sec)

2.2.12.

5.3.1 FlashEd performance
To measure server performance, we used WebStone (version
2.5), a freely available webserver benchmarking system [22].
WebStone allows a speci�ed number of client processes to be
forked on multiple machines, sending HTTP GET requests to

the server. Each client receives an identical �lelist containing
a list of �les to request, and a corresponding probability for
each �le. Each request is determined pseudo-randomly, as
preferenced by this probability. After a speci�ed time, all
clients are halted, and relevant data from each is collated.

While other performance metrics are potentially interesting,
here we focus on server throughput, which is the total bytes
served by the webserver divided by the total time.
We ran our tests using the recommended con�guration.

We used the standard �lelist, which contains �les of sizes
500B, 5KB, 50KB, 500KB, and 5 MB, where the most pre-

ferred size is 5 KB, followed closely by 500B. We ran for con-
�gurations of 20 and 100 clients, evenly distributed across
three machines; the server itself ran on the fourth machine.
Each run was for 10 minutes. We measured 11 runs and the
data presented here are means. In all cases the standard de-
viation was 1% or less than the mean and the distributions

were not skewed.
To understand the cost of updating, we compared statically-

compiled and updateable versions of all three versions of
FlashEd. In addition, we compared the di�erence between
a version that was statically compiled with updating en-
abled, to the version that was actually patched on-line. We

suspected that the latter case might have worse performance
due to a larger memory footprint or poorer cache locality.
In particular, it will retain the original version of the code in
the text segment along with any new code, which is loaded
into the data segment. Table 1 shows the results of our

measurements, reported in Mbits/sec.
The di�erence in throughput between the �rst and sec-

ond columns is due to adding indirections. This di�erence
ranges from 2% to 6% and tends to be greater for version
1 and larger numbers of clients. The di�erence between the
second and third column is the additional overhead created

by actually updating the running system. Surprisingly, the
updated code is consistently faster than the statically linked
code. These di�erences are negligible, and certainly within
the margin of error of our experiments, but we are currently
attempting to �nd a reason nonetheless.
As a point of reference, we measured the fully-optimized,

C version of Flash. For 20 clients it achieves an average

of 56.8 Mbit/sec and for 100 clients 70.2 Mbit/sec. We ex-

pected Flash to consistently outperform FlashEd, so we are
surprised that for version 3 of FlashEd in particular, the re-
verse is true. However, although FlashEd is a faithful port of
Flash, it is not clear what exactly to draw from this compar-
ison beyond the fact that this suggests that TAL, and PCC
in general, is a viable platform for medium-performance ap-

plications.

5.3.2 Microbenchmarks
To gain a more detailed understanding of the cost of the indi-
rections, we measured null function calls using the Pentium
cycle counter. A call to a local function (not requiring any

indirection) was 36 cycles, while a call to an external func-
tion (requiring two indirections) was 46 cycles, a di�erence
of 10 cycles (28%). In a more optimized implementation
having only a single indirection, the di�erence is 7 cycles
(19%).
The indirection penalty occurs only when references are

to de�nitions not in the current �le. To discover the rele-
vant fraction of references, we modi�ed the Popcorn com-
piler to insert counters for global references, whether to data
or functions, di�erentiating between references to external
and static variables. We then re-built the three versions of
FlashEd and ran our macrobenchmark suite on each of them

for times of one, three, and ten minutes, with 20 clients.
For versions one, two, and three of the server, the dy-

namic reference count was 70%, 71%, and 62%, respec-
tively. Combining this information with the directly mea-
sured, per-reference overhead, we arrive at average reference
times of between 42 and 43 cycles, or between 17% and 19%

slower than without updating (the optimized implementa-
tion would be between 10% and 14% slower). Our mac-
robenchmark results show that, in practice, this is a very
loose upper bound.
Another important cost is the time to verify and link the

loaded patch �les. To patch version one to two, the total
time for the sixteen �les was roughly 17.7 seconds, on aver-
age about 1.1 seconds per �le. For the fourteen �les patching
version two to three, the total time was roughly 18.3 seconds,
or about 1.3 seconds per �le. According to [5], veri�cation is
generally linear in the size of the �les being veri�ed. Over-

all, these times are disappointing. However, they do not
outweigh the value of veri�cation for two reasons. First, ver-
i�cation times could very well be improved. For example,
proof-carrying code [15] has demonstrated small veri�cation
times, albeit with a di�erent type system. Second, veri�-
cation could be performed in parallel with normal service.

After veri�cation completes, only linking remains, and this
cost is negligible; in the two sets of patches above, linking
accounted for 130 ms and 125 ms of the total time, respec-
tively.

6. DISCUSSION
To conclude, we discuss related work, place our current work
into a broader context, and consider future work. We orga-

nize the discussion around our four major criteria for evalu-
ating updating systems: exibility, correctness, ease-of-use,
and low overhead. A more complete discussion of related
work may be found in [7].

6.1 Flexibility
At one extreme of the exibility axis are systems that use



dynamic linking alone to support updating [1, 18]. These

solutions are only adequate when the programmer antici-
pates the kinds of updates that may be made ahead of time
and structures the program to accommodate them. This is
because dynamic linking only allows new code to be plugged
into existing interfaces. The lack of exibility of this kind
of system is a direct inspiration for our current work [8].

Some systems are more powerful than dynamic linking,
but do not allow arbitrary changes. For example, Dynamic
ML [4] permits the replacement of ML modules whose types
are abstract, as long as the new module's signature is not in-
compatible with the old one: existing elements cannot be re-
moved and their types must be unchanged. A similar restric-

tion is placed on the Dynamic Virtual Machine [12], a Java
VM with updating ability, and Dynamic C++ classes [10].
At the other extreme of the exibility axis are systems

that, like ours, allow nearly arbitrary changes to programs
at runtime, thus supporting true program evolution [11, 3,
6, 2, 12, 10]. DYMOS [11] (DYnamic MOdi�cation Sys-

tem) is perhaps the most exible existing system; it sup-
ports multi-threaded programs, allows changes to occur on
a per-function or per-module basis, and also provides for in-
�nite loops to be updated. Like our system, some of these
systems mitigate complexity and add exibility by permit-
ting updates to occur while old code is still active. A grad-

ual transition from old to new code occurs at well-de�ned
points, such as at procedure calls [2, 11, 3], or during object
creation [10].
We believe our system represents a good compromise be-

tween the two extremes: the generality of our dynamic patches

allow us to achieve most of the exibility of the most gen-
eral solutions, and programmer control of patch application
gives good exibility in timing updating. However, there
are some important exibility limitations we would like to
address, as informed by our experience with FlashEd.

Unchecked updates. The most obvious limitation is that
because we only allow updating to occur using proof-carrying
code, it is impossible to update the trusted computing base.

Although we expect changes at that level to be rare, they
also can be critical, as we saw with the need to update the
veri�er so that it veri�es all parts of a patch. Although
there are some technical diÆculties (not to mention correct-
ness and safety issues), we could relax this limit by providing
a lower-level interface to the dynamic loader, circumventing

the PCC-only one we use in general (as described in [9]).

Function pointers. We also have diÆculty dealing with

function pointers. In our approach, updating is enabled by
adding an extra indirection at each reference to an external
function name in the code. However, no provision is made
for data that points to external values. For instance, a func-
tion pointer to some function f would still point to the old
version if f were updated. While we can work around this

problem during state transformation, we have experimented
with solving this problem more generally by having the com-
piler alter its translation to dereference function pointers
late, rather than early. In particular, in the current imple-
mentation, the actual address of f is stored, while in the
experimental one, a pointer to the address of f is stored in-

stead. This allows the dereferencing of the function pointer
to occur just before it is called, obtaining the newest ver-
sion. There are a number of problems with this approach

that we are trying to work out; doing so will be crucial for

our methodology to apply to functional languages.

Namespace Security. Throughout this paper we have as-
sumed a model in which one or more trusted implemen-

tors may change the software and update its running code.
However, in some circumstances, we would like to allow up-
dates from untrusted sources. For example, we might build
a webserver in which users load servlets to perform some
customized operation on their behalf. User code should not

have access to core components of the webserver, or to other
servlets, implying the need to control the symbol namespace
used during linking, based on some security criteria.
This is easy to do for the value namespace in our sys-

tem, thanks to how we have constructed the TAL dynamic
linker [9]. It should be simple to modify the untrusted part

of the dynamic linker to support policy-based access to value
symbols. In fact, such a change could even be realized dy-
namically! However, doing the same for types, whose de�-
nitions are stored in the trusted part of the dynamic linker
(the veri�er), is less straightforward. One possibility is to
parameterize the loading primitive with a �rst-class type en-

vironment. This environment will be assumed to be a subset
of the environment as understood by the veri�er, a fact that
can be checked. Then the untrusted part of the linker can be
programmed with policies to restrict the typing environment
at appropriate times.

Updating abstract types. In Popcorn, structures and unions
can be declared abstract, meaning that only the code in the
local �le may see the type's implementation; this is enforced

by the TAL veri�er. As a result, no dynamically-linked �le
will be able to see the implementation of an abstract type.
In general, this behavior is desirable, but it also prevents
us from loading new code to \update" (by replacement) the
implementation of the abstract type.
It is possible that the proposal we outlined above for

namespace security can apply to abstract types as well. In
particular, the veri�er can maintain the least restrictive type
environment (that allows breaking the abstraction), while
the untrusted linker code will pass in a more restrictive en-
vironment for all those cases except ones in which the type's

implementation is to be updated.

6.2 Correctness
Dynamic linking provides a signi�cant advantage with re-
spect to correctness over the more general updating system
we have proposed, simply because bindings are stable: once
bound, a reference never changes. Previous work has lever-
aged this fact to try to build support for evolving systems

that only use dynamic linking. For example, Appel [1] de-
scribes an approach in which the old and new version of
code can run concurrently in separate threads, with the old
version phasing out after it completes its work. Similarly,
Peterson et al. [18] describe an application-speci�c means of
stopping a program, updating its code, and then invoking

the new version with the old version's state. Both of these
approaches su�er the problem that they are more diÆcult
to use and less exible.
However, as we explained in x3:3:3, allowing code to change

arbitrarily can result in incorrect behavior if timing is not
considered. While we believe that our approach of requiring

the system to be constructed so that a correct update point



is determined, much work remains for determining where
such safe points lie. In particular, things get more com-
plicated with multithreading. Previous work [6, 11, 3] can
serve as a starting point for this investigation.
Correctness is greatly strengthened by verifying impor-

tant safety properties of loaded code, including type safety.
This is a key bene�t to our approach, and to the DVM [12],

which makes use of Java bytecode veri�cation. Other sys-
tems bene�t from the use of type-safe source languages, like
SML [1, 4], Haskell [18] and Modula [11], but must trust the
compiler; we need only trust the veri�er. Erlang is dynami-
cally typed, so runtime type errors are possible. Most other
approaches are for C [3, 6] and C++ [10], which lacks the

bene�t of type-safety.

6.3 Ease-of-Use
Dynamic linking is generally easy to use and is well inte-
grated into standard programming environments. Also due

to its widespread support in current languages and systems,
it is also quite portable. In contrast, the more exible sys-
tems are quite hard to use. In all of the existing systems,
patches must be constructed by hand: the programmer must
identify parts of the system that have changed and reect
these in the �le to load. In many cases, the limitations of

patch �les hamper the normal development process.
Ease-of-use is one of the areas that our system makes the

greatest contributions. Our basic methodology, in which
programs are developed normally, and dynamic patches up-
date the old version to the new, limits disruption of normal

work ow. In particular, the semi-automatic generation of
patches greatly increases the ease-of-use of our system, au-
tomating the most tedious parts of patch generation, while
letting the programmer control the more subtle aspects that
are not amenable to automation.

6.4 Low Overhead
While both Gupta's system [6], and Dynamic ML [4] essen-
tially implement updating by rewriting (as de�ned in x3:2),
most systems implement dynamic updating by indirection,
either as we do [2, 12, 10], or in slightly more clever ways [11,

3]. Dynamic linking may, as in the case of ELF [21], or may
not impose an indirection as well, a�ecting those systems
based on it [18, 1]. As we have demonstrated here, however,
this extra indirection does not translate to high overhead
in practice. Furthermore, because our approach is based on
native code, it lacks the overhead of interpretation, e.g., as
in the DVM [12].

7. CONCLUSIONS
We have presented a system for dynamic software up-

dating built on type-safe dynamic linking of native code.
Our framework provides signi�cant advances in balancing

the tradeo�s of exibility, correctness, ease-of-use, and low
overheads, as borne out by our experience with our dynam-
ically updateable webserver, FlashEd.
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