
Finding Failure-Inducing Changes using
Change Classification

Maximilian Stoerzer
Lehrstuhl Softwaresysteme

University of Passau
Innstraße 32, 94032 Passau,

Germany
stoerzer@fmi.uni-passau.de

Barbara G. Ryder and
Xiaoxia Ren

Dept. of Computer Science
Rutgers University

110 Frelinghuysen Road
Piscataway, NJ 08854, USA
{ryder,xren}@cs.rutgers.edu

Frank Tip
IBM T.J. Watson
Research Center

P.O. Box 704
Yorktown Heights, NY 10598

USA
ftip@us.ibm.com

ABSTRACT
Testing and code editing are interleaved activities during program
development. When tests fail unexpectedly, the changes that caused
the failure are not always easy to find. Change classification fo-
cuses programmer attention on those changes most likely to be
failure-inducing. We define several classifiers that automatically la-
bel changes as Red, Yellow, or Green, indicating the likelihood that
they have contributed to a test failure. We implemented our change
classification tool JUnit/CIA as an extension to the JUnit compo-
nent within Eclipse, and evaluated its effectiveness in two case
studies. Initial results indicate that change classification succeeds
in focusing programmer attention on failure-inducing changes, thus
improving on manual debugging techniques. Furthermore, change
classification can determine those changes that can be committed
safely to a version control repository without breaking any tests,
even if a developer’s local workspace contains failing tests.

1. INTRODUCTION
In modern software development, coding and unit testing are per-

formed in interleaved fashion to assure code quality. Current devel-
opment strategies rely heavily on the availability of a test suite to al-
low a programmer to quickly assess the impact of edits on program
functionality. Difficulties occur when testing reveals unexpected
behaviors, such as assertion failures or exceptions. Although the
programmer knows thereby that she has introduced a bug, she still
does not know which part of the edit is responsible for the failure.
If the edits are trivially small, it may be easy to find the buggy
code; however, as the code base and/or edits grow in size, it be-
comes more difficult to identify the failure-inducing change(s), and
tedious manual debugging may be needed.

Our change classification technique relies on the change impact
analysis of [17] to find the tests potentially affected by an edit
(i.e., a set of changes), and to associate with each such test, a
set of affecting changes. It then classifies these affecting changes
as Red, Yellow, or Green, depending on whether they affect (i)
tests whose outcome has improved, (ii) tests whose outcome has
degraded, (iii) tests whose outcome has remained unchanged, or
some combination of (i), (ii), and (iii). Our goal has been to de-
velop a classifier for which Red changes are highly likely to be
failure-inducing, Green changes are highly unlikely to be failure-
inducing, and Yellow changes fall somewhere in between. Since
it was not clear a priori which classifier would work best, we de-
signed five change classifiers and compared their effectiveness.

In addition, by gathering problematic changes that are associ-
ated only with tests whose outcome has degraded, it is possible to

determine a subset of the edit that can be committed to a reposi-
tory safely (i.e., without breaking any tests), even in cases where
some tests are failing in a programmer’s local workspace. This al-
lows early adoption of each team member’s changes by other team
members, which helps prevent inefficient parallel implementations
of the same functionality and reduces the number of possible con-
flicts when merging changes later in the development process.

Our prototype JUnit/CIA1 is an extension of the Eclipse compo-
nent that integrates the popular JUnit testing framework with the
Eclipse IDE (see www.junit.org and www.eclipse.org).
JUnit/CIA relies on Chianti [17] for: (i) dividing a program edit
into its constituent atomic changes, (ii) identifying tests affected by
the edit by correlating (dynamic) call graphs for the tests with the
atomic changes, and (iii) determining affecting changes for each of
these tests. JUnit/CIA then classifies changes according to one of
the five classifiers and visualizes them using a small extension of
the user-interface in JUnit.

We conducted two case studies with JUnit/CIA to find failure-
inducing changes in student programs and in Daikon [6], respec-
tively. In each study, the actual causes of failure (i.e., failure-
inducing changes) were determined by human examination of the
code. The student programs study determined a best classifier
(relaxed-red/relaxed-green) from among five candidates that was
superior in focusing programmer attention on the failure-inducing
changes. Surprisingly, the Daikon study found a different classifier
(strict-red/relaxed-green) to be most effective. This difference is
due to properties of the data used in the two studies (see Section 4).

The main contributions of this paper are the demonstration that
change classification is (i) an approach to focus programmer at-
tention effectively on likely sources of failure and (ii) an enabler of
the early release of changes to a repository, aiding early adoption of
new code by team members. In addition, the empirical case stud-
ies provide quantitative measurement of the effectiveness of sev-
eral classifiers on different kinds of programs. For example, in the
student programs study, there were 444 tests with two or more af-
fecting changes, whose outcomes were degraded (by the edit); the
relaxed-red/relaxed-green classifier focused programmer attention
on the failure-inducing changes correctly in 47.5% of these tests.
Of the 6624 changes in this entire case study, 3553 (53.6%) were
found to be safe candidates for release to the repository.

2. EXAMPLE OF OUR APPROACH
Figure 1(a) shows two versions of a small example program.

1This name reflects the fact that the tool extends the functionality
of JUnit with features for Change Impact Analysis.

1

public class A {
public A(int i){ x = i; }
public void foo(){ x = x + 0; 1 }
public void bar(){ y = x; 3 }
public void zap(){ }
public void zip(){ y = x; 5 }
public int x;

public static int y; 4

public static int getY(){ return y; } 6,7

}
public class B extends A {

public B(int j){ super(j); }
public void foo(){ }
public void bar(){ x++; 2 }

}
public class C extends A {

public C(int k){ super(k); }
public void zap(){ x = 5; } 8,9,10,11

}
class D extends A {

public D(int l) { super(l); }
public void foo(){ x--; 12 }

}

public class Tests extends TestCase {
public void testPassPass(){

A a = new A(5);
a.foo(); a.bar();
Assert.assertTrue(a.x == 5);

}
public void testPassFail(){

A a = new C(7);
a.foo(); a.zap(); a.zip();
Assert.assertTrue(a.x == 7);

}
public void testFailPass(){

A a = new B(8);
a.foo(); a.bar(); a.zip();
Assert.assertTrue(a.x == 9);

}
public void testFailFail(){

A a = new B(6);
a.foo(); a.bar();
Assert.assertTrue(a.x == 11);

}
public void testCrashFail(){

A a = new D(5); a.foo();
int i = a.x / (a.x - 5);
Assert.assertTrue(a.x == 5);

}
}

(a) (b)

Figure 1: (a) Original and edited version of example program. The original program consists of all program fragments except those
shown in boxes. The edited program is obtained by adding all boxed code fragments. Each box is labeled with the numbers of the
corresponding atomic changes. (b) Tests associated with (both versions of) the example program.

Figure 2: Atomic changes inferred from the two versions of the program.

Figure 3: Call graphs for the original version of the program. Figure 4: Call graphs for the edited version of the program.
2

Here, the original version of the program consists of all program
fragments except for those shown in boxes; the edited version is ob-
tained by adding all the boxed code fragments. Associated with the
program are five JUnit tests, testPassPass, testPassFail,
testFailPass, testFailFail and testCrashFail as
shown in Figure 1(b).

We assume that the tests of Figure 1(b) will be used with both the
original and edited versions of the program. The name of each test
indicates its outcome in each version of the program; for example,
testPassFail passes in the original program, but produces an
assertion failure in the edited version.

Atomic Changes. Our change impact analysis relies on the
computation of a set of atomic changes, denoted by A , that cap-
tures all source code modifications at a semantic level amenable to
analysis. We use a fairly coarse-grained model of atomic changes,
with change categories such as added classes (AC), deleted classes
(DC), added methods (AM), deleted methods (DM), changed
methods (CM), added fields (AF), deleted fields (DF), and lookup
changes (LC) (i.e., dynamic dispatch).2

Additionally, we compute syntactic dependences between
atomic changes. Intuitively, an atomic change A1 is dependent on
another atomic change A2, if applying A1 to the original version
of the program without also applying A2 results in a syntactically
invalid program (i.e., A2 is a prerequisite for A1, A2 � A1). For-
mally, syntactic dependences define a partial ordering � on a set
of changes, with transitive closure �∗. These dependences can be
used to construct syntactically valid intermediate versions of the
program that contain some, but not all the atomic changes.

It is important to understand that the syntactic dependences do
not capture all semantic dependences between changes (e.g., con-
sider changes related to a variable definition and a variable use in
two different methods). This means that if two atomic changes, A1
and A2, affect a given test T , then the absence of a syntactic depen-
dence between A1 and A2 does not imply the absence of a semantic
dependence; that is, program behaviors resulting from applying A1
alone, A2 alone, or A1 and A2 together, may all be different.

Figure 2 shows the atomic changes that define the two versions
of the example program, numbered 1 through 12 for convenience.
Each atomic change is shown as a box, where the top half of the box
shows the category of the atomic change (e.g., CM for changed
method), and the bottom half shows the method or field involved
(for LC changes, the declaring class and method are shown). An
arrow from an atomic change A1 to an atomic change A2 indicates
that A1 is dependent on A2. Consider, for example, the addition
of the assignment y = x in method A.zip(). This source code
change corresponds to atomic change 5 in Figure 2. Adding this
assignment will lead to a syntactically invalid program unless field
A.y is also added. Therefore, atomic change 5 is dependent on
atomic change 4, an AF change for field A.y.

In some cases, a single source code change is decomposed into
several atomic changes. For example, the addition of A.getY()
produces atomic changes 6 and 7, where the former models the ad-
dition of an empty method A.getY(), and the latter the addition
of its method body. Observe that atomic change 7 is dependent on
atomic change 6, reflecting the fact that a method must exist before
its body can be added. Change 7 is also dependent on change 4 (an
AF change for field A.y), because adding the body of A.getY()
will result in a syntactically invalid program unless field A.y is
added as well.

The LC atomic change category models changes to the dynamic
dispatch behavior of instance methods. In particular, an LC change

2 See [17] for additional change categories.

(Y,X .m()) models the fact that a call to method X .m() on an object
of run-time type Y results in the selection of a different method.
Consider, for example, the addition of method C.zap() to the
program of Figure 1. As a result of this change, a call to A.zap()
on an object of type C will dispatch to C.zap() in the edited pro-
gram, whereas it dispatches to A.zap() in the original program.
This change in dispatch behavior is captured by atomic change 10.

Determining Affected Tests. In order to identify those tests that
are affected by a set of atomic changes, a call graph is constructed
for each test in the original program.3 Our analysis can work with
call graphs that have been constructed either using static analysis,
or by observing the actual execution of the tests.

Figure 3 shows the call graphs for the tests of Figure 1(b) in the
original program. Edges corresponding to dynamic dispatch are la-
beled with a pair < RT,M >, where RT is the run-time type of the
receiver object, and M is the method referenced at the call site. A
test is determined to be affected if its call graph (in the original pro-
gram) contains either (i) a node that corresponds to a CM (changed
method) or DM (deleted method) change, or (ii) an edge that cor-
responds to a LC (lookup) change. In Figure 3 clearly all five
tests are affected, because they each execute at least one method
corresponding to a CM change. For example, the call graphs for
testPassPass() and testPassFail() contain nodes cor-
responding to changed method A.foo() (change 1).

Determining Affecting Changes. In order to compute the set
of changes affecting a given test, we construct a call graph for that
test in the edited program. These call graphs are shown in Figure 4.
The set of atomic changes that affect a given test includes: (i) all
atomic changes for added (AM) and changed (CM) methods that
correspond to a node in the call graph (in the edited program), (ii)
lookup changes (LC) that correspond to an edge in the call graph,
and (iii) their transitively prerequisite atomic changes.

For example, the call graph for testPassFail in Figure 4
contains nodes corresponding to methods A.foo(), C.zap(),
and A.zip(). These nodes correspond to atomic changes 1, 9,
and 5 in Figure 2, respectively. The call graph for testPassFail
also contains an edge labeled <C,A.zap()>, corresponding to
atomic change 10. From the dependences in Figure 2, it can be
seen that change 9 requires change 8, and change 5 requires change
4. Therefore, the affecting changes for testPassFail are 1, 4,
5, 8, 9, and 10. Similarly, we determine that 1, 3, 4 are the affecting
changes for testPassPass, that 2, 4, 5 are the affecting changes
for testFailPass, that only change 2 affects testFailFail
and that only change 12 affects testCrashFail.

Change Classification. Thus far, we have seen that there are 12
atomic changes, and that the behavior of each of the five tests is
affected by one or more of these changes. The goal of change clas-
sification is to answer the following question: Which of those 12
changes are the likely reason(s) for the test failure(s)? We provide
an answer to this question by classifying the changes according to
the tests that they affect. Intuitively, this works as follows:

• A change that affects only improving tests, (i.e., tests such as
testFailPass that fail in the original program, but that
succeed in the edited version) is classified as Green. For ex-
ample, change 12 (CM for D.foo()) only affects test-
CrashFail and thus is Green.4

3 Call graphs contain one node for each method, and edges between
nodes to reflect calling relationships between methods.
4 We consider CRASH to be a worse result than FAIL, because in
conducting the experiments described in Section 4, we observed
several bugs that resulted in changing the result of a test from FAIL
to CRASH.

3

• A change that affects only worsening tests, (i.e., tests such
as testPassFail that succeed in the original program,
but that fail in the edited version) is classified as Red. For
example, changes 8, 9, 10 (AM and CM for C.zap() and
LC for <C,A.zap()>) only affect testPassFail so
they are Red.

• A change that affects both improving tests and worsening
tests is classified as Yellow. For example, change 4 (AF for
A.y) affects both testPassFail and testFailPass
and therefore is Yellow.

Intuitively, Red changes are most likely to be the reason for a
test failure, followed by Yellow changes, and then Green changes.
How to associate colors with changes becomes less obvious when
changes also affect tests that have the same outcome in both pro-
gram versions. Section 3 defines a number of classifiers that
follow different strategies. For two of these change classifiers
(strict-red/relaxed-green, strict-red/strict-green), only changes 8, 9
and 10 are colored Red. The observant reader may verify that these
are exactly the failure-inducing changes for this example.

3. DEFINITIONS
In this section, we present several change classifiers. We im-

plicitly make the usual assumptions [7] that program execution is
deterministic and that the library code and execution environment
(e.g., JVM) remain unchanged. We will also assume that no depen-
dences between tests exist.5

3.1 Classifying Tests and Changes
Our classification of tests is based on the JUnit test result model

in which a test can pass, fail (i.e., an assertion failure) or crash
(i.e., an exception is caught by the JUnit runtime). Definition 3.1
below formalizes this test result model6 and introduces an ordering
in which passing tests are preferred over failing tests, and failing
tests are preferred over crashing tests.

DEFINITION 3.1 (TEST RESULT MODEL). Let R = { PASS,
FAIL, CRASH} be the set of all test results. Furthermore, we define
the following ordering on test results:

CRASH < FAIL < PASS

For a given test T , we will use the notation Rorig(T) and Redit(T)
to represent the result of test T in the original program and the
edited program, respectively, where Rorig(T),Redit(T) ∈ R . Def-
inition 3.2 below uses this notation to classify tests as worsening
or improving. Tests that are new or that have been deleted in the
edited program have no effect on change classification, as they do
not correlate with improved or degraded test results.

DEFINITION 3.2 (TEST CLASSIFICATION). Let T be the set
of all tests. Then the sets WT and IT of worsening tests and improv-
ing tests, respectively, are defined as follows:

WT = {T ∈ T |Rorig(T) > Redit(T)}
IT = {T ∈ T |Redit(T) > Rorig(T)}

5 While it is possible to create such dependences in JUnit, this is
often an indication of bad programming style.
6 Our approach can easily be adapted to accommodate other test
result models with, for example, a single error state or multiple
fine-grained error states.

In the definitions below, we will use the notation AT(A) to repre-
sent the tests in T affected by atomic change A ∈ A and AC(T) to
represent the atomic changes affecting a given test T ∈ T . Def-
inition 3.3 defines auxiliary change sets Worsening, Improving,
SomeFailFail, SomePassPass, and OnlyPassPass. Worsening and
Improving are the sets of changes that affect at least one worsening
test, or at least one improving test, respectively. SomeFailFail and
SomePassPass are the sets of changes that affect at least one test
that crashes/fails or passes in both versions, respectively. Finally,
OnlyPassPass is the set of changes that only affect tests that pass in
both versions.

DEFINITION 3.3 (CHANGE INFLUENCE).

Worsening = {A |A ∈ A , WT∩AT(A) 6= /0}
Improving = {A |A ∈ A , IT∩AT(A) 6= /0}
SomeFailFail = {A | ∃T ∈ AT(A),

Rorig(T) = Redit(T) ∈ {FAIL,CRASH }}
SomePassPass = {A | ∃T ∈ AT(A),

Rorig(T) = Redit(T) = PASS }
OnlyPassPass = {A | ∀T ∈ AT(A),

Rorig(T) = Redit(T) = PASS }

We now can classify changes as Red, Yellow, or Green. Intu-
itively, our goal is to develop a classifier for which Red changes
are highly likely to be the reason for test failures, Yellow changes
are possibly problematic, and Green changes are correlated with
successful tests. There are several ways in which one could design
such a classifier, and it was not clear to us a priori which approach
would work best in practice. Therefore, our approach was to define
five different classifiers that each partition the set of changes into
Red, Yellow, and Green subsets in slightly different ways. In Sec-
tion 4 we will present a comparative evaluation of these different
classifiers on a set of Java applications with associated JUnit tests.

The first classifier is called simple and relies only on test results
in the edited program. A change is classified Red if it only affects
failing or crashing tests, Green if it only affects passing tests, and
Yellow otherwise.

The remaining four classifiers depend on the development
of test results for the two versions. Figure 5 shows how
these classifiers are obtained by using either a relaxed or
a strict criterion for determining Green changes, together
with a relaxed or a strict criterion for determining Red
changes. Thus, we obtain four classifiers that we will
refer to as relaxed-red/relaxed-green, strict-red/relaxed-green,
relaxed-red/strict-green, and strict-red/strict-green.

Intuitively, the relaxed-green criterion marks as Green any
change that affects improving tests but not worsening tests, as
well as any change that only contributes to tests that succeed in
the edited version of the program. While this is a reasonable
criterion, it may have the somewhat counterintuitive effect that a
Green change may affect a test that fails in the edited version of
the program. In the example in Figure 1, change 2 affects both
testFailPass, an improving test, and testFailFail; it will
be colored Green by the relaxed-green criterion. The strict-green
criterion eliminates such potentially confusing effects by requiring
that all Green changes must only affect tests that succeed in the
edited program, (i.e., change 2 will be colored Yellow).

The difference between relaxed-red and strict-red is similar. The
relaxed-red classifier marks as Red any change that affects worsen-
ing tests but not improving tests. This is reasonable, but it may have
the counterintuitive effect that a change that affects a test succeed-
ing in both versions of the program may still be Red (e.g., change
1 in our example). The strict-red criterion further restricts Red

4

A ∈ Green ⇔ A ∈ OnlyPassPass∨ (A ∈ Improving∧A 6∈ Worsening)
A ∈ Red ⇔ (A 6∈ Improving∧A ∈ Worsening)
A ∈ Yellow ⇔ A 6∈ Red, A 6∈ Green, AT(A) 6= /0

A ∈ Green ⇔ A ∈ OnlyPassPass∨ (A ∈ Improving∧A 6∈ Worsening)
A ∈ Red ⇔ (A 6∈ Improving∧A ∈ Worsening∧A 6∈ SomePassPass)

A ∈ Yellow ⇔ A 6∈ Red, A 6∈ Green, AT(A) 6= /0

Classifier 1: (relaxed-red/relaxed-green) Classifier 2: (strict-red/relaxed-green)

A ∈ Green ⇔ A ∈ OnlyPassPass∨
(A ∈ Improving∧A 6∈ Worsening∧A 6∈ SomeFailFail)

A ∈ Red ⇔ (A 6∈ Improving∧A ∈ Worsening)
A ∈ Yellow ⇔ A 6∈ Red, A 6∈ Green, AT(A) 6= /0

A ∈ Green ⇔ A ∈ OnlyPassPass∨
(A ∈ Improving∧A 6∈ Worsening∧A 6∈ SomeFailFail)

A ∈ Red ⇔ (A 6∈ Improving∧A ∈ Worsening∧A 6∈ SomePassPass)
A ∈ Yellow ⇔ A 6∈ Red, A 6∈ Green, AT(A) 6= /0

Classifier 3: (relaxed-red/strict-green) Classifier 4: (strict-green/strict-red)

Figure 5: Definitions of four methods for classifying atomic changes into Red, Yellow, and Green changes.

changes to affect only tests that fail or crash. Any changes that do
not meet this more stringent requirement to be Red are classified as
Yellow.

Note that there is an asymmetry in the four non-simple change
classifiers. A change that affects only tests that pass in both ver-
sions is always classified as Green, whereas a change that affects
only tests that fail in both versions always is classified as Yellow. To
motivate this decision, recall that the purpose of our change clas-
sification is to reveal failure-inducing changes. A change that only
affects passing tests by definition is not failure-inducing (for the
current test suite) and is therefore classified as Green. In contrast,
if a change A affects a test that fails in both versions, the failure
in the edited version may reflect the same problem as before, or it
may now be due to A; therefore, Yellow seems a more appropriate
choice than Red.

Some changes do not affect any tests. We classify a change A as
Gray, if it has no affected tests (i.e. AT(A) = /0). This is a coverage
issue rather than a debugging issue, as it indicates that the test suite
should be expanded to cover Gray changes as well. Table 1 shows
how the changes of the example of Figure 2 are classified according
to our five classifiers.

Chg. simple relaxed-red strict-red relaxed-red strict-red
relaxed-green relaxed-green strict-green strict-green

1 Yellow Red Yellow Red Yellow
2 Yellow Green Green Yellow Yellow
3 Green Green Green Green Green
4 Yellow Yellow Yellow Yellow Yellow
5 Yellow Yellow Yellow Yellow Yellow
6 Gray Gray Gray Gray Gray
7 Gray Gray Gray Gray Gray
8 Red Red Red Red Red
9 Red Red Red Red Red

10 Red Red Red Red Red
11 Gray Gray Gray Gray Gray
12 Red Green Yellow Green Yellow

Table 1: Classification of the atomic changes of Figure 2 ac-
cording to the simple classifier and the 4 classifiers in Figure 5.

3.2 Determining Committable Changes
In current development practice, it is customary to release

changes to a version control repository only when all tests suc-
ceed. As a result, the intervals between commits of changes to a
repository are often long, and significant differences may exist be-
tween successive versions. In the presence of multiple developers,
the existence of significant changes between successive versions
may complicate the task of integrating these changes. Determining
committable changes that can be exposed safely to others by early
release of changes to a repository enables developers to reduce the

amount of time spent subsequently on change integration.
Before we can determine subsets of changes that can be commit-

ted safely in the presence of failing tests, we need to resolve when
a set of changes should be considered committable. One possibility
is having a commit policy:

Changes that break tests should not be committed.

However, this policy is often unnecessarily restrictive. Consider
a situation where a test T fails in both the original and the edited
version of the program, and where change A affects T . Then, the
failure of T in the edited program may be caused by A, or it may
be due to the same reason that caused T ’s failure in the original
version.7

It is often sufficient to ensure that no additional test failures oc-
cur due to committed changes, which corresponds to the following
less restrictive commit policy:

Changes that make test outcomes worse should not be committed.

Given this policy, it is clear that any change A that affects a worsen-
ing test cannot be committed. In addition, if A is a prerequisite for
another change A′, then committing A′ without also committing A
leads to a syntactically invalid program. Consequently, any change
A′ directly or indirectly depending on non-committable change A
must be excluded from the set of committable changes as well.
Moreover, as we already remarked in Section 2, semantic depen-
dences may also exist between changes. Figure 6 shows an exam-
ple that illustrates why semantic dependences must be taken into
account when determining committable changes.

The example consists of a class SD containing methods
SD.zip() and SD.zap(), and a class Test that defines tests
test1 and test2. The original program consists of all code
fragments except those shown in boxes, which are added to ob-
tain the edited program. In the original version, SD.zip() and
SD.zap() are both defined as the identity function, hence both
tests succeed. In the edited version, test2 fails because the value
computed for x is 2, which is different from the expected value of
1. We compute two CM changes for this program, one for each of
the methods SD.zip() and SD.zap(), with neither change syn-
tactically dependent on the other. We find that test1 is affected
by both CM changes, and that test2 is only affected by CM
for SD.zip(). However, committing only CM for SD.zap()
would result in a version where test1 fails, illustrating that se-
mantic dependences must be taken into account when computing
committable changes.

Definition 3.4 states that a change A is committable if: (i) A does
not affect any worsening tests, (ii) all of A’s prerequisite changes
7 Determining why T fails in the edited program is beyond the
scope of the analysis in this paper.

5

class SD {
static int zip(int x) { x = 2 * x; return x; }
static int zap(int x) { x = x / 2; return x; }

}
class Test {

public void test1() {
int x = 1; x = SD.zip(x); x = SD.zap(x);
assertEquals(1, x); }

public void test2() {
int x = 1; x = SD.zip(x);
assertEquals(1, x); }

}

Figure 6: Example program that illustrates a semantic depen-
dence between two changes. The original program contains all
code fragments except those shown in boxes; the edited pro-
gram is obtained by adding the boxed code fragments.

are committable, and (iii) for any test T affected by A, all of T ’s
affecting changes must be committable. Condition (iii) encodes
the conservative assumption that semantic dependences may exist
between any pair of changes that affect a given test. This condition
means that for each test, either all or none of its affecting changes
will be committed. While the suggested definition is safe, it might
be unnecessarily imprecise. We consider finding a more precise
approximation for semantic dependences to be a topic for future
work.

DEFINITION 3.4 (COMMITTABLE CHANGES).

ACommittable =
{ A |A 6∈ Worsening, ∀A′ : A′ �∗ A : A′ ∈ ACommittable,
∀T ∈ AT(A) : A′′ ∈ AC(T) =⇒ A′′ ∈ ACommittable }

Returning to the example program of Figure 1, we can com-
pute the committable changes as follows. Our set of candidate
changes includes changes 2, 3, 6, 7, 11 and 12 (i.e., those changes
that do not affect testPassFail). From this set, 3, 7 and 11
are eliminated because of non-committable prerequisite changes.
Consequently, only changes 2, 6 and 12 are candidates for com-
mittable changes. Change 2 affects two tests, testFailFail
and testFailPass. testFailPass is also affected by non-
committable changes 4 and 5. Since we conservatively assume se-
mantic dependences among these changes, change 2 is not commit-
table. Change 6 does not affect any test and change 12 affects the
improving test testCrashFail, for which it is the only affect-
ing change. Therefore, both changes 6 and 12 are committable.

To further explore the handling of committable changes, we have
developed Crisp [2], a tool that automatically constructs syntacti-
cally valid intermediate program versions that include a user-speci-
fied set of atomic changes.

4. IMPLEMENTATION AND EVALUATION
To evaluate our change classifiers we created the tool JUnit/CIA,

which is implemented as an Eclipse plug-in, and builds on the anal-
ysis component of the Chianti tool that we developed previously
[17]. JUnit/CIA uses the version of the program that is currently in
the workspace as the edited version, and retrieves an original ver-
sion from the local history8 that corresponds to the last time that
the test suite was executed. Dynamic call graphs for the tests are

8 The local history is a local RCS repository maintained by Eclipse
that records all textual changes.

obtained by monitoring their execution using the JVMPI profiling
interface.

Figure 7: JUnit/CIA hierarchy view
The user-interface of JUnit/CIA extends that of the JUnit Eclipse

component as follows: (i) in the JUnit test hierarchy view, affect-
ing changes are shown in a tree-view underneath each test, where
expanding the tree reveals prerequisite changes (see Figure 7), and
(ii) an additional view shows all the changes organized by category
(i.e., AM, CM, etc.). In each of these views, colored icons are as-
sociated with changes to indicate if they are Red, Yellow, Green, or
Gray, and double-clicking on a change causes a standard Eclipse
compare view of the associated original and edited code to appear.

In order to improve performance, we implemented a filtering
mechanism that allows users to avoid tracing of methods in stan-
dard libraries. Although, by assumption, such methods do not con-
tain any changes, they may execute virtual method calls that dis-
patch to methods in user code (i.e., call-backs), and such dispatch
operations may exhibit changed behavior when overridden library
methods are added, deleted, or changed. We conservatively approx-
imate the behavior of call-backs using an approach similar to that
of [25].

During our experiments with student code, we encountered sev-
eral situations where tests did not terminate. To handle such cases,
we implemented a time-out mechanism where the execution of a
test is aborted after a specified number of seconds (in our experi-
ments, we used a time-out of 10 seconds). In such cases, we used
the dynamic call graph obtained by executing the program up to
that point, and consider the test result to be CRASH. We extended
the standard JUnit launch configuration to allow users to specify
these filtering and time-out options.

4.1 Case Study 1: Student Projects
In the first case study, we analyzed source code from 40 small

student projects of an undergraduate programming course at the
University of Passau. In this course, students implemented Dinic’s
Maximum Flow algorithm using a predefined set of mandatory in-
terfaces. The students were provided with a set of public black
box tests that had to be successfully executed in order for students
to pass the course. We also defined a secret tests suite that per-
formed additional tests on student programs. The students knew
about this secret test suite, but had no detailed knowledge about the
tests themselves. Although the students had to agree that their code
could be used for research purposes, they did not know that their
data would be used to evaluate change classifiers. Course manage-

6

number of version pairs
written by students 1175
that contain semantic changes 556
with associated worsening tests 110
with identifiable failure-inducing changes 98
where versions pairs differ by >1 change 61

Table 2: Selection of version pairs from the student data.

ment was provided using the web-based Praktomat system [28].
Students frequently submitted their solutions to Praktomat, which
then automatically compiled them and ran the tests. Praktomat au-
tomatically saves all submitted versions in a database, so that these
versions were available to us for this case study.

Analyzed code base. Some minor postprocessing of the stu-
dent code was needed to make it suitable for our experiments. As
Praktomat uses black box testing, the public tests were coarse-
grained regression tests for DejaGNU.9 Our postprocessing con-
sisted of writing equivalent JUnit tests with assertions based on the
mandatory interfaces, and adding finer-grained unit tests. In a few
cases, several interpretations of the mandatory interfaces existed
(e.g., node numbering in the graph could start at 0, or at 1), and we
rewrote the tests for specific student solutions to uniformly use the
same approach. We also commented out debugging output in a few
cases (for performance reasons). None of these changes affected
the semantics of the submitted code in fundamental ways.

On average, each of the final, graded solutions consisted of 950
LOC of commented Java source code. We analyzed a total of 1175
version pairs written by 40 students. The total code base analyzed
in the experiment was 1240 KLOC. Of these 1175 version pairs,
556 contained semantic changes,10 and 110 of these 556 version
pairs had worsening tests associated with them. For 98 of these
110 version pairs, we could manually identify a failure-inducing
change set.11 Since we are interested in techniques for automat-
ically determining failure-inducing change sets, we need version
pairs that differ by more than one change (otherwise, the reason
for the failure is obvious). Eliminating the version pairs that differ
by one change resulted in a final set of 61 version pairs (out of the
98) that we used as the basis for evaluating the 5 change classifiers
presented in Section 3. The process of selecting version pairs is
illustrated by Table 2.

Per-Version-Pair Evaluation. The 61 version pairs contained
a total of 401 atomic changes. Table 3 shows how the different
classifiers associate colors with these changes. From left to right,
the columns of the table indicate the total number of changes clas-
sified as Red, Yellow, and Green, respectively. For example, the
relaxed-red/relaxed-green classifier finds 138 Red, 126 Yellow and
137 Green changes.

To determine classifier quality, we manually identified the
failure-inducing changes, by selectively undoing subsets of
changes and observing whether or not the failure still occurred.
For each of the 5 classifiers, we then calculated the recall and pre-
cision. These are core metrics from information retrieval theory,

9 DejaGNU is an open-source black box regression-testing frame-
work, see www.gnu.org/software/dejagnu/.

10Our analysis considers two versions the same if they only differ
in terms of layout or comments. The relatively high number of
versions without changes is due to coding style requirements for
the course. Unfortunately, our students tend to first write working
code and add comments, improve layout, etc. afterwards, which
results in many different versions without functional changes.

11 In the remaining 12 cases we were unable to determine the
failure-inducing changes due to the size of the edit or non-
deterministic test behavior.

Classifier #Red #Yellow #Green
relaxed-red/relaxed-green 138 126 137
strict-red/relaxed-green 77 187 137
relaxed-red/strict-green 138 200 63
strict-red/strict-green 77 261 63
simple 119 238 44

Table 3: Coloring of changes according to the 5 classifiers (cu-
mulative statistics over 61 version pairs).

Classifier recall
Green

prec.
Green

recall
Red

prec.
Red

false
Pos.

false
Neg.

relaxed-red/
relaxed-green 19.3 100.0 58.5 76.5 23.5 41.5
strict-red/
relaxed-green 19.3 100.0 28.1 87.7 12.3 71.9
relaxed-red/
strict-green 14.5 100.0 58.5 76.5 23.5 41.5
strict-red/
strict-green 14.5 100.0 28.1 87.7 12.3 71.9
simple 12.5 100.0 28.1 76.0 24.0 71.9

Table 4: Recall, precision, false positives, and false negatives
for each classifier (average percentages over 61 version pairs).

stating the percentage of desired results retrieved, and the percent-
age of correctly retrieved items among all retrieved items, respec-
tively. For Red changes, recall is the percentage of failure-inducing
changes colored Red, and precision is the percentage of actually
failure-inducing Red changes among all Red changes. For Green
changes, recall is the percentage of non-failure-inducing changes
colored Green, whereas precision is the percentage of non-failure-
inducing Green changes among all Green changes.

For Red changes,12 we also computed the average rate of false
positives (i.e., changes that are classified as Red but that are not
failure-inducing) and false negatives (i.e., failure-inducing changes
that are not classified as Red). Table 4 shows, on average over the
61 version pairs, the recall and precision of the Green changes, the
recall and precision of the Red changes, and the average percentage
of false positives and false negatives, respectively. For an overview
of the non-aggregated data, the reader is referred to appendix A
(and following).

When analyzing the results of Table 4, it is easy to see that the
simple classifier can be dismissed, because it has both the lowest re-
call and the lowest precision. For the 4 other classifiers, the choice
between strict vs. relaxed can be made independently for the Green
changes and the Red changes, so we will consider these decisions
separately.

It is not obvious a priori whether the strict-red or relaxed-red
classifiers should be preferred. Note that finding the optimal choice
is a two-dimensional optimization problem: Ideally, we would like
to classify all failure-inducing changes as Red, while not color-
ing any non-failure-inducing changes Red. As Table 4 shows, the
strict-red classifiers yield a better precision (87.7% vs. 76.5%), but
the relaxed-red classifiers yield a better recall (58.5% vs. 28.1%).
In this case, the relaxed-red classifiers seem preferable given that
they offer significantly (∼30%) higher recall at the cost of a mod-
erate (∼10%) loss in precision.

The choice between the strict-green and relaxed-green classifiers
is easier to make. Examining the results of Table 4, we can ob-

12 False positives and false negatives only pertain to Red changes,
and not Green changes as we focus on the ability of our classifiers
to find failure-inducing changes. Note that the percentage of false
positives equals 1−precision, and that the percentage of false neg-
atives equals 1− recall.

7

www.gnu.org/software/dejagnu/

classifier helpful neutral harmful
simple 67 333 44
strict-red 113 295 36
relaxed-red 211 233 0

Table 5: Effectiveness of the classifiers at focusing the program-
mer’s attention on failure-inducing changes.

serve that both the strict-green and relaxed-green classifiers have
a precision of 100%. In other words, we find that, in this case
study, each classifier has the desirable property that changes clas-
sified as Green are never failure-inducing. Moreover, for Green
changes, the relaxed-green classifiers produce a recall of 19.3%
versus 14.5% for the strict-green classifiers. This suggests that
the relaxed-green classifiers are the most successful at classify-
ing non-failure-inducing changes as Green.13 Consequently, the
relaxed-green classifiers are clearly preferable over the strict-green
ones. Combining our conclusions about the classification of Red
and Green changes, we conclude that the relaxed-red/relaxed-green
classifier produces the best results.

Per-Test Evaluation. As a final step in this case study, we mea-
sure how often change classification helps the programmer find the
failure-inducing changes for a given test failure. For this “per test”
view, we examine 444 worsening tests in the 61 version pairs under
consideration that have 2 or more affecting changes. The baseline
we compare to is the uncolored set of affecting changes as calcu-
lated by Chianti. Table 5 shows how often the simple, strict-red and
relaxed-red classifiers are helpful at focusing the programmer’s at-
tention on the failure-inducing changes. The helpful column counts
the number of tests where all failure-inducing changes are colored
Red, and some of the other affecting changes for the test are Yellow.
In other words, helpful cases are those where change classifica-
tion provides more accurate information than the (uncolored) af-
fecting changes and thus helps focus the programmer’s attention.
The neutral column counts the number of tests for which all affect-
ing changes are Red and the number of tests for which all affecting
changes are Yellow. In other words, neutral cases are those where
change classification is neither helpful nor harmful. The harmful
column counts the number of tests for which some failure-inducing
changes are colored Yellow, and where some non-failure-inducing
changes are colored Red. Hence, harmful cases are those where
the coloring actively points the programmer at the wrong changes.
The results of Table 5 shows that the relaxed-red classifiers are suc-
cessful at focusing programmer attention in 47.5% (211/444) of the
cases, while doing no harm in the remaining cases. The strict-red
and simple classifiers are not only less effective, but they also pro-
duce harmful results in a significant percentage of the cases, thus
confirming our conclusion that the relaxed-red classifiers should be
preferred.

Committable changes. For the student data we also counted
the committable changes in the student code, according to Defi-
nition 3.4. Of the initial 6624 changes, 53.6% (3553) are com-
mittable. This shows that change classification is likely to be use-
ful in collaborative development scenarios, by enabling developers
to expose changes to team members more quickly. Note that for
this case study we were dealing with tests that are relatively high-
level, resulting in many dependences between affecting changes.
For systems and test suites that are more modular, we expect an
even higher percentage of committable changes.

13 While a recall of 19.3% is still low, this is an artifact of our
evaluation data (few changes, significant number of them failure-
inducing) and our desire to be conservative by never classifying a
change affecting a worsening test as Green.

4.2 Case Study 2: Daikon
Daikon [6] is a system for discovering likely invariants in soft-

ware systems using dynamic analysis. We extracted several ver-
sions of Daikon from the CVS repository, but (unfortunately for
our purpose) could not find any worsening unit tests. However,
we noticed that several unit tests changed between the Daikon ver-
sions Daikon/2002-11-11 and Daikon/2002-11-19, and reusing the
old tests with the edited version produced 2 test failures. In the ex-
periments discussed below, we treat these test failures as worsening
tests. For the Daikon version pair under consideration, a total of 61
tests were defined, of which 40 were affected by the edit (there
were also 7 new tests and 3 deleted tests). The two versions dif-
fered significantly, as a total of 6093 atomic changes were reported
by our tool.

The first test, testXor, was affected by 35 atomic changes.
Manual inspection of the code revealed that two CM changes to
methods daikon.diff.XorVisitor.shouldAddInv1()
and daikon.diff.XorVisitor.shouldAddInv2() were
responsible for the test’s failure. The relaxed-red classifiers failed
to focus on these changes because they classified all 35 affecting
changes as Red, as there are no improving tests for these two ver-
sions. Both strict-red classifiers correctly identified the 2 failure-
inducing changes as Red, as well as 2 of 33 remaining changes,
with the rest classified as Yellow. In other words, the strict-red clas-
sifiers were very successful at correctly focusing the programmer’s
attention on the appropriate affecting changes.

The second test, testMinus, produced a similar result.
This test was affected by 34 changes, and we manually identi-
fied the failure-inducing change to be a CM change to method
daikon.diff.Diff.shouldAdd(). Again, the relaxed-red
classifiers were not useful because they classified all 34 changes as
Red. The strict-red classifiers were again very effective by classify-
ing the failure-inducing change as Red, only two other changes as
Red, and the 31 remaining changes as Yellow. Thus, the program-
mer’s attention was focused on only 3 of 34 changes.

The two Daikon versions were separated by 6093 changes of
which 5715 were classified as Gray due to the low coverage of
the Daikon unit test suite. Of the remaining 378 changes, 338 were
Green, 33 Yellow, and only 7 Red using the strict-red/relaxed-green
classifier.

5278 of the 6093 changes (86.6%) were classified as commit-
table, according to Definition 3.4. In this case, a high coupling ex-
isted between tests and changes (one change affected 36/40 tests),
and no covered (i.e., non-Gray) changes were found to be commit-
table due to the conservative treatment of semantic dependences.

4.3 Assessment
While it seems contradictory that the case studies involving stu-

dent data and Daikon suggest that different classifiers should be
preferred, we think there is a good reason for this. The student
projects are characterized by small differences between versions,
and a mixture of improving and worsening tests can be observed.
We consider this to be very close to the intended usage scenario of
our system in an IDE such as Eclipse where unit tests are executed
frequently, and it is encouraging to see that failure-inducing change
sets can be determined with relatively high precision and recall. In
the Daikon study, on the other hand, where the differences between
versions and the sets of changes affecting each test tend to be much
larger, there are only a few worsening tests, and no improving tests.
In this case, it is encouraging to see that the strict-red classification
allows one to quickly isolate the failure-inducing changes among
the changes affecting each test. While these case studies present a
number of interesting data points, more empirical studies on large

8

real-world programs are clearly needed.

5. RELATED WORK
Delta Debugging. In the work by Zeller et al. on delta de-

bugging, the reason for a program failure is identified as a set of
differences between versions [27], inputs [30], thread schedules
[3], or program states [29, 4] that distinguish a succeeding pro-
gram execution from a failing one. A set of failure-inducing dif-
ferences is determined by repeatedly applying different subsets of
the changes to the original program and observing the outcome
of executing the resulting intermediate programs. By correlating
the outcome of each execution (pass, fail, or inconsistent), the set
of failure-inducing changes can be narrowed down using efficient
binary-search techniques.

Our work and delta debugging both aim at identifying failure-
inducing changes, but differ in several important ways. Delta de-
bugging may construct an intermediate program that is syntacti-
cally invalid or produces indeterminate results, and therefore re-
quires an inconsistent test outcome. We assume programs to be
compilable when tests are executed and our tests have outcomes
that are determinate (PASS, FAIL, CRASH). Delta debugging de-
termines whether or not a change is failure-inducing by observing
the effect of its presence or absence in two program executions.
Our use of a more fine-grained (i.e., Red, Yellow, Green, Gray)
classification of changes stems from our observation of the effect
of changes on multiple tests. Delta debugging requires the exe-
cution of intermediate programs in order to find failure-inducing
changes, which may require, in the worst case, a number of exe-
cutions proportional to the number of changes. In our approach,
which does not require the execution of intermediate programs, the
construction of dynamic call graphs involves only a constant over-
head factor at runtime. Delta debugging may be able to narrow
down the set of failure-inducing changes more effectively, because
the execution of intermediate program versions provides additional
information about the reason for a program failure. Our approach
identifies reasons for failures using the results of distinct tests that
execute different subsets of the changes, and requires a suite of tests
with this property. The two approaches, with different strengths and
weaknesses, may complement each other. In principle, the use of a
richer model of changes with interdependences could improve the
efficiency of delta debugging by reducing the number of interme-
diate programs that need to be constructed. Conversely, our change
classification could be made more precise by executing tests on in-
termediate program versions, and taking their results into account.

Comparing Dynamic Data Obtained From Different Execu-
tions. Several debugging approaches rely on comparing dynamic
information associated with succeeding and failing runs. Reps et al.
[18] proposed comparing path profile data obtained from different
program executions in order to expose incorrect Year 2000 date-
related computations that might give rise to the execution of dif-
ferent paths. Harrold et al. [8] evaluated the effectiveness of com-
paring path profiles (and other run-time metrics) for distinguishing
successful executions from failing ones. They found a strong corre-
lation between differences in path profiles and different execution
behavior; similar findings held for their other metrics.

Jones et al. [9] present a discrete visualization approach in which
the colors red, yellow, and green are used to visualize statements
executed only by failing tests, by succeeding and failing tests, and
only by succeeding tests, respectively. Jones et al. remark that this
approach is “not very informative, as most of the program is yel-
low”. Because of the inconclusive nature of these results, Jones et
al. also developed a continuous visualization where a gradual scale
of color and brightness reflects both the absolute number of tests,

and the relative percentages of passing and failing tests that exe-
cute a given statement. The main difference between our work and
their discrete approach is that we visualize the correlation between
changes and their affected tests, whereas Jones et al. visualize the
correlation of statements with test results. Our approach is likely to
be more effective because the number of executed changes is gen-
erally far smaller than the number of executed statements. More-
over, the execution of different statements by a failing test may have
been caused by a change in a completely different location due to
the non-locality of change impact in object-oriented programs, so
focusing the programmer’s attention at such changes is likely to be
more helpful. It would be interesting to experiment with the use of
a continuous scale of color and brightness in our work as well; we
consider this a possible topic for future work.

Dallmeier et al. [5] present a technique for localizing errors by
comparing sequences of method calls in passing and failing runs of
a program. From their experiments they conclude that comparing
method call sequences is a better defect indicator than a simple
coverage-based metric for method calls, such as the one by Jones
et al [9], and that comparing sequences of method calls on the same
object is an even better predictor.

Liblit et al. [13, 14] present statistical analyses in which informa-
tion is gathered about the number of times that certain predicates
are executed by deployed applications, in order to detect predicates
whose outcome correlates with a crash. A low sampling frequency
is used to ensure low run-time overhead, so a large number of sam-
ples is needed to obtain meaningful data. A number of strategies
is presented that allow one to quickly rule out certain predicates
as being related to failures. The work of [13] applies in situations
with a single bug, whereas that of [14] can identify separate causes
in the presence of multiple bugs.

Change Impact Analysis. We previously presented the concep-
tual framework [19] of our change impact analysis, and its expan-
sion to the full Java language with empirical validation [17]. The
goals of this work is to find a subset of the changes that impact
a given test, and to classify changes based on their impact on test
behaviors. Other research on impact analysis has concentrated on
finding program constructs potentially affected by changes. These
analyses are based on static analysis [1, 12, 10, 26], dynamic anal-
ysis [11] or, like our analysis, on a combination of the two [15].
Recent work on change impact analysis includes the PathImpact
algorithm by Law and Rothermel [11], where dynamic call infor-
mation is used to determine the procedures potentially impacted
by a change to a procedure p, and the CoverageImpact technique
by Orso et al. [15], which combines the use of a forward static
slice [24] with respect to a changed program entity (i.e., a basic
block or method) with execution data obtained from instrumented
applications to find affected program entities. An empirical com-
parison of these algorithms can be found in [16].

Continuous Testing and Test Factoring. Saff and Ernst [20,
23] propose to use the idle CPU during editing for safe asyn-
chronous continuous testing. Their experiments derive from
recorded development data a positive correlation between the time
span from bug introduction to bug discovery (ignorance time), and
the amount of time required to fix bugs (fix time), in order to
demonstrate the benefit of continuous testing based on a cognitive
model of developer actions. In [22], these results are confirmed in
a comparative case study with student developers.

The same authors introduce test factoring [21], a technique for
automatically creating fast, focused unit tests from slow system-
wide tests using dynamic analysis, with the objective of reducing
the amount of time until test failures occur (wait time). Change
classification complements continuous testing and test factoring by

9

directly reducing fix time.

6. CONCLUSIONS
There are three main contributions of this paper. First, we pre-

sented an approach for change classification that helps program-
mers identify the changes responsible for test failures. As part of
this approach, we proposed several change classifiers that associate
the colors Red, Yellow, or Green with changes, according to the
likelihood that they were responsible for test failures. Second, we
described how change classification can be used to determine a set
of changes that can be released safely to a version control reposi-
tory, even in cases where the programmer’s local workspace con-
tains failing tests. Third, we implemented these change classifica-
tion techniques in JUnit/CIA, an extension of the JUnit component
of Eclipse, and conducted two case studies. In the student pro-
grams case study, the relaxed-red/relaxed-green classifier focused
programmer attention on failure-inducing changes in 47.5% of the
version pairs, without providing misleading information in the re-
maining cases. In the same case study, 53.6% of the changes were
found to be committable, in spite of our coarse approximation of
semantic dependences. In the Daikon case study, another classifier
(strict-red/relaxed-green) was the most effective due to the differ-
ent nature of the data involved. While these results are promising,
it is clear that more data and/or a user study are needed for a full
validation of the approach.

Acknowledgements. This research was supported by NSF grant
CCR-0204410 and, in part, by IBM Research.

7. REFERENCES
[1] BOHNER, S. A., AND ARNOLD, R. S. An introduction to software

change impact analysis. In Software Change Impact Analysis, S. A.
Bohner and R. S. Arnold, Eds. IEEE Computer Society Press, 1996,
pp. 1–26.

[2] CHESLEY, O., REN, X., AND RYDER, B. G. Crisp: A debugging
tool for Java programs. In Proc. of the Int. Conf. on Software
Maintentance (September 2005).

[3] CHOI, J.-D., AND ZELLER, A. Isolating failure-inducing thread
schedules. In Proc. ACM SIGSOFT Int. Symp. on Softw. Testing and
Analysis (ISSTA 2002) (Rome, Italy, 2002), pp. 210–220.

[4] CLEVE, H., AND ZELLER, A. Locating causes of program failures.
In Proc. 27th Int. Conf. on Softw. Engineering (ICSE 2005) (St.
Louis, MO, 2005).

[5] DALLMEIER, V., LINDIG, C., AND ZELLER, A. Lightweight defect
localization for Java. In Proc. 19th European Conf. on Object-
Oriented Programming (ECOOP’05) (Glasgow, Scotland, 2005).

[6] ERNST, M. D. Dynamically discovering likely program invariants.
PhD thesis, University of Washington, 2000.

[7] HARROLD, M. J., JONES, J. A., LI, T., LIANG, D., ORSO, A.,
PENNINGS, M., SINHA, S., SPOON, S. A., AND GUJARATHI, A.
Regression test selection for Java software. In Proc. of the ACM
SIGPLAN Conf. on Object Oriented Programming Languages and
Systems (OOPSLA’01) (October 2001), pp. 312–326.

[8] HARROLD, M. J., ROTHERMEL, G., WU, R., AND YI, L. An
empirical investigation of program spectra. In Proc. of the ACM
SIGPLAN Workshop on Program Analysis for Softw. Tools and
Engineering (PASTE’98) (Montreal, Canada, 1998), pp. 83–90.

[9] JONES, J. A., HARROLD, M. J., AND STASKO, J. Visualization of
test information to assist fault localization. In Proc. Int. Conf. on
Softw. Engineering (ICSE’02) (Orlando, FL, 2002), pp. 467–477.

[10] KUNG, D. C., GAO, J., HSIA, P., WEN, F., TOYOSHIMA, Y., AND
CHEN, C. Change impact identification in object oriented software
maintenance. In Proc. of the Int. Conf. on Softw. Maintenance (1994),
pp. 202–211.

[11] LAW, J., AND ROTHERMEL, G. Whole program path-based dynamic
impact analysis. In Proc. of the Int. Conf. on Softw. Engineering
(2003), pp. 308–318.

[12] LEE, M., OFFUTT, A. J., AND ALEXANDER, R. T. Algorithmic
analysis of the impacts of changes to object-oriented software. In
Proc. 34th Int. Conf. on Technology of Object-Oriented Languages
and Systems (TOOLS USA’00) (Santa Barbara, CA, 2000).

[13] LIBLIT, B., AIKEN, A., ZHENG, A. X., AND JORDAN, M. I. Bug
isolation via remote program sampling. In Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI’03) (San Diego, CA, 2003), pp. 141–154.

[14] LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN,
M. I. Scalable statistical bug isolation. In Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI’05) (Chicago, IL, 2005).

[15] ORSO, A., APIWATTANAPONG, T., AND HARROLD, M. J.
Leveraging field data for impact analysis and regression testing. In
Proc. of European Softw. Engineering Conf. and ACM SIGSOFT
Symp. on the Foundations of Softw. Engineering (ESEC/FSE’03)
(Helsinki, Finland, September 2003).

[16] ORSO, A., APIWATTANAPONG, T., LAW, J., ROTHERMEL, G.,
AND HARROLD, M. J. An empirical comparison of dynamic impact
analysis algorithms. In Proc. of the Int. Conf. on Softw. Engineering
(ICSE’04) (Edinburgh, Scotland, 2004), pp. 491–500.

[17] REN, X., SHAH, F., TIP, F., RYDER, B. G., AND CHESLEY, O.
Chianti: a tool for change impact analysis of Java programs. In Proc.
of the ACM SIGPLAN Conf. on Object Oriented Programming
Languages and Systems (OOPSLA’04) (Vancouver, Canada, October
2004), pp. 432–448.

[18] REPS, T., BALL, T., DAS, M., AND LARUS, J. The use of program
profiling for software maintenance with applications to the year 2000
problem. In Proc. of the 6th European Softw. Conf. (ESEC/FSE’97)
(1997), pp. 432–449. Springer-Verlag LNCS Vol. 1013.

[19] RYDER, B. G., AND TIP, F. Change impact for object oriented
programs. In Proc. of the ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Softw. Tools and Engineering (PASTE’01)
(June 2001).

[20] SAFF, D., AND ERNST, M. D. Reducing wasted development time
via continuous testing. In Fourteenth Int. Symp. on Softw. Reliability
Engineering (Denver, CO, November 17–20, 2003), pp. 281–292.

[21] SAFF, D., AND ERNST, M. D. Automatic mock object creation for
test factoring. In ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Softw. Tools and Engineering (PASTE’04) (Washington,
DC, USA, June 7–8, 2004), pp. 49–51.

[22] SAFF, D., AND ERNST, M. D. An experimental evaluation of
continuous testing during development. In ISSTA 2004, Proc. of the
2004 Int. Symp. on Softw. Testing and Analysis (Boston, MA, USA,
July 12–14, 2004), pp. 76–85.

[23] SAFF, D., AND ERNST, M. D. Continuous testing in eclipse. In
Proc. of the 26th Int. Conf. on Softw. Engineering (ICSE’05) (St.
Louis, MO, USA, May 2005).

[24] TIP, F. A survey of program slicing techniques. J. of Programming
Languages 3, 3 (1995), 121–189.

[25] TIP, F., SWEENEY, P. F., LAFFRA, C., EISMA, A., AND
STREETER, D. Practical extraction techniques for Java. ACM Trans.
on Programming Languages and Systems 24, 6 (2002), 625–666.

[26] TONELLA, P. Using a concept lattice of decomposition slices for
program understanding and impact analysis. IEEE Trans. on Softw.
Engineering 29, 6 (2003), 495–509.

[27] ZELLER, A. Yesterday my program worked. Today, it does not.
Why? In Proc. of the 7th European Softw. Engineering Conf./7th
ACM SIGSOFT Symp. on the Foundations of Softw. Engineering
(ESEC/FSE’99) (Toulouse, France, 1999), pp. 253–267.

[28] ZELLER, A. Making students read and review code. In ITiCSE ’00:
Proc. of the 5th annual SIGCSE/SIGCUE ITiCSE Conf. on
Innovation and technology in computer science education (2000),
ACM Press, pp. 89–92.

[29] ZELLER, A. Isolating cause-effect chains from computer programs.
In Proc. ACM SIGSOFT 10th Int. Symp. on the Foundations of Softw.
Engineering (FSE 2002) (Charleston, SC, 2002), pp. 1–10.

[30] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating
failure-inducing input. IEEE Trans. on Softw. Eng. 28, 2 (2002),
183–200.

10

APPENDIX
This appendix contains detailed information for each of the five analyzers and each individual of all 98 versions containing failure inducing
changes.
Legend: ‘#’ indicates absolute numbers, ‘%’ a percentage. ‘VS’ identifies the version pair, ‘|∆|’ the number of changes total, ‘FIC’ failure-
inducing changes, ‘FP’ false positives and ‘FN’ false negatives. ‘Prec.’ is abreviated for precision.

A. relaxed-red/relaxed-green

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

3474 109 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
13455 104 55 2 11 5 0 9 0 81.8 0.0 0.0 100.0 100.0 18.2
15753 126 15 3 9 0 0 6 0 66.7 0.0 0.0 100.0 100.0 33.3
15828 113 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16560 104 8 2 0 2 3 0 2 0.0 100.0 50.0 100.0 0.0 100.0
16560 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16560 122 3 3 3 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16788 107 29 2 0 3 5 0 2 0.0 100.0 18.5 100.0 0.0 100.0
16788 109 7 1 2 3 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16788 130 19 1 1 1 6 0 0 0.0 0.0 33.3 100.0 100.0 100.0
16788 135 5 1 0 1 2 0 1 0.0 100.0 50.0 100.0 0.0 100.0
16830 108 12 1 0 6 4 0 1 0.0 100.0 36.4 100.0 0.0 100.0
16830 110 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16830 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 116 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 155 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 156 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 160 5 1 0 1 4 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 180 5 2 4 1 0 3 1 75.0 50.0 0.0 100.0 50.0 25.0
16899 113 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 115 21 2 9 4 0 7 0 77.8 0.0 0.0 100.0 100.0 22.2
16953 116 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 123 19 1 7 3 0 6 0 85.7 0.0 0.0 100.0 100.0 14.3
17082 108 6 1 2 0 1 1 0 50.0 0.0 20.0 100.0 100.0 50.0
17094 107 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 111 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 115 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 118 33 1 0 1 8 0 1 0.0 100.0 25.0 100.0 0.0 100.0
17094 120 17 3 0 11 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
17094 121 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 125 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 132 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17136 112 11 2 0 4 4 0 2 0.0 100.0 44.4 100.0 0.0 100.0
17283 110 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 148 3 1 3 0 0 2 0 66.7 0.0 0.0 100.0 100.0 33.3
17448 117 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 121 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 141 14 6 1 9 0 0 5 0.0 83.3 0.0 100.0 16.7 100.0
17448 144 3 2 1 1 0 1 2 100.0 100.0 0.0 100.0 0.0 0.0
17661 108 16 1 4 0 0 3 0 75.0 0.0 0.0 100.0 100.0 25.0
17661 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 125 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 133 10 1 1 4 1 0 0 0.0 0.0 11.1 100.0 100.0 100.0
17661 134 10 1 2 2 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0

11

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

17661 139 10 2 3 0 1 1 0 33.3 0.0 12.5 100.0 100.0 66.7
17661 140 9 1 0 4 3 0 1 0.0 100.0 37.5 100.0 0.0 100.0
17661 142 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17661 150 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17823 115 4 1 3 0 0 2 0 66.7 0.0 0.0 100.0 100.0 33.3
17841 114 13 4 4 2 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 116 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 118 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17895 106 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17895 114 257 1 0 2 8 0 1 0.0 100.0 3.1 100.0 0.0 100.0
17895 121 6 1 0 2 2 0 1 0.0 100.0 40.0 100.0 0.0 100.0
17895 132 2 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17895 134 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18021 113 83 1 20 1 4 19 0 95.0 0.0 4.9 100.0 100.0 5.0
18021 116 11 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18093 117 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 104 28 1 0 1 13 0 1 0.0 100.0 48.1 100.0 0.0 100.0
18123 121 5 1 1 1 3 0 0 0.0 0.0 75.0 100.0 100.0 100.0
18123 122 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 123 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 126 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 136 5 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18234 106 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 105 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 116 11 2 7 0 0 5 0 71.4 0.0 0.0 100.0 100.0 28.6
18312 120 2 2 2 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 126 6 3 3 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
18717 111 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 128 138 2 1 1 5 0 1 0.0 50.0 3.7 100.0 50.0 100.0
18717 129 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18717 138 8 1 1 0 4 0 0 0.0 0.0 57.1 100.0 100.0 100.0
18717 146 11 2 1 2 2 0 1 0.0 50.0 22.2 100.0 50.0 100.0
21228 106 126 1 0 7 27 0 1 0.0 100.0 21.6 100.0 0.0 100.0
21435 124 26 1 1 1 12 0 0 0.0 0.0 48.0 100.0 100.0 100.0
21477 115 110 2 0 19 12 0 2 0.0 100.0 11.1 100.0 0.0 100.0
21477 145 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 150 5 1 1 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21477 180 16 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 185 11 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
21477 187 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 193 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 195 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21879 108 17 1 8 0 1 7 0 87.5 0.0 6.3 100.0 100.0 12.5
21879 109 6 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21879 131 3 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0

B. strict-red/relaxed-green

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

3474 109 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
13455 104 55 2 8 8 0 8 2 100.0 100.0 0.0 100.0 0.0 0.0
15753 126 15 3 0 9 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
15828 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16560 104 8 2 0 2 3 0 2 0.0 100.0 50.0 100.0 0.0 100.0
16560 119 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16560 122 3 3 0 3 0 0 3 0.0 100.0 100.0 100.0 0.0 100.0
16788 107 29 2 0 3 5 0 2 0.0 100.0 18.5 100.0 0.0 100.0
16788 109 7 1 2 3 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0

12

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

16788 130 19 1 0 2 6 0 1 0.0 100.0 33.3 100.0 0.0 100.0
16788 135 5 1 0 1 2 0 1 0.0 100.0 50.0 100.0 0.0 100.0
16830 108 12 1 0 6 4 0 1 0.0 100.0 36.4 100.0 0.0 100.0
16830 110 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16830 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 116 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 120 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 155 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 156 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 160 5 1 0 1 4 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 180 5 2 4 1 0 3 1 75.0 50.0 0.0 100.0 50.0 25.0
16899 113 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 115 21 2 9 4 0 7 0 77.8 0.0 0.0 100.0 100.0 22.2
16953 116 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 123 19 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17082 108 6 1 0 2 1 0 1 0.0 100.0 20.0 100.0 0.0 100.0
17094 107 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 111 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 115 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 118 33 1 0 1 8 0 1 0.0 100.0 25.0 100.0 0.0 100.0
17094 120 17 3 0 11 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
17094 121 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 125 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 132 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17136 112 11 2 0 4 4 0 2 0.0 100.0 44.4 100.0 0.0 100.0
17283 110 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 148 3 1 0 3 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17448 117 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 121 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 141 14 6 1 9 0 0 5 0.0 83.3 0.0 100.0 16.7 100.0
17448 144 3 2 1 1 0 1 2 100.0 100.0 0.0 100.0 0.0 0.0
17661 108 16 1 2 2 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
17661 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 125 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 133 10 1 1 4 1 0 0 0.0 0.0 11.1 100.0 100.0 100.0
17661 134 10 1 0 4 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 139 10 2 2 1 1 0 0 0.0 0.0 12.5 100.0 100.0 100.0
17661 140 9 1 0 4 3 0 1 0.0 100.0 37.5 100.0 0.0 100.0
17661 142 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17661 150 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17823 115 4 1 0 3 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17841 114 13 4 4 2 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 116 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 118 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17895 106 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17895 114 257 1 0 2 8 0 1 0.0 100.0 3.1 100.0 0.0 100.0
17895 121 6 1 0 2 2 0 1 0.0 100.0 40.0 100.0 0.0 100.0
17895 132 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17895 134 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18021 113 83 1 20 1 4 19 0 95.0 0.0 4.9 100.0 100.0 5.0
18021 116 11 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18093 117 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 104 28 1 0 1 13 0 1 0.0 100.0 48.1 100.0 0.0 100.0
18123 121 5 1 0 2 3 0 1 0.0 100.0 75.0 100.0 0.0 100.0

13

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

18123 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18123 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18123 126 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 136 5 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18234 106 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18312 105 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 116 11 2 2 5 0 1 1 50.0 50.0 0.0 100.0 50.0 50.0
18312 120 2 2 1 1 0 0 1 0.0 50.0 100.0 100.0 50.0 100.0
18312 126 6 3 3 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
18717 111 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 128 138 2 1 1 5 0 1 0.0 50.0 3.7 100.0 50.0 100.0
18717 129 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18717 138 8 1 0 1 4 0 1 0.0 100.0 57.1 100.0 0.0 100.0
18717 146 11 2 0 3 2 0 2 0.0 100.0 22.2 100.0 0.0 100.0
21228 106 126 1 0 7 27 0 1 0.0 100.0 21.6 100.0 0.0 100.0
21435 124 26 1 0 2 12 0 1 0.0 100.0 48.0 100.0 0.0 100.0
21477 115 110 2 0 19 12 0 2 0.0 100.0 11.1 100.0 0.0 100.0
21477 145 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 150 5 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 180 16 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 185 11 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 187 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
21477 193 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 195 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
21879 108 17 1 1 7 1 0 0 0.0 0.0 6.3 100.0 100.0 100.0
21879 109 6 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21879 131 3 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0

C. relaxed-red/strict-green

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

3474 109 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
13455 104 55 2 11 5 0 9 0 81.8 0.0 0.0 100.0 100.0 18.2
15753 126 15 3 9 0 0 6 0 66.7 0.0 0.0 100.0 100.0 33.3
15828 113 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16560 104 8 2 0 2 3 0 2 0.0 100.0 50.0 100.0 0.0 100.0
16560 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16560 122 3 3 3 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16788 107 29 2 0 3 5 0 2 0.0 100.0 18.5 100.0 0.0 100.0
16788 109 7 1 2 3 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16788 130 19 1 1 1 6 0 0 0.0 0.0 33.3 100.0 100.0 100.0
16788 135 5 1 0 1 2 0 1 0.0 100.0 50.0 100.0 0.0 100.0
16830 108 12 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16830 110 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16830 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 116 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 155 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 156 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 160 5 1 0 1 4 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 180 5 2 4 1 0 3 1 75.0 50.0 0.0 100.0 50.0 25.0
16899 113 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 115 21 2 9 4 0 7 0 77.8 0.0 0.0 100.0 100.0 22.2
16953 116 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 123 19 1 7 3 0 6 0 85.7 0.0 0.0 100.0 100.0 14.3
17082 108 6 1 2 0 1 1 0 50.0 0.0 20.0 100.0 100.0 50.0
17094 107 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 111 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0

14

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

17094 115 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 118 33 1 0 9 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17094 120 17 3 0 11 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
17094 121 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 125 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 132 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17136 112 11 2 0 4 4 0 2 0.0 100.0 44.4 100.0 0.0 100.0
17283 110 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 148 3 1 3 0 0 2 0 66.7 0.0 0.0 100.0 100.0 33.3
17448 117 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 121 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 141 14 6 1 9 0 0 5 0.0 83.3 0.0 100.0 16.7 100.0
17448 144 3 2 1 1 0 1 2 100.0 100.0 0.0 100.0 0.0 0.0
17661 108 16 1 4 0 0 3 0 75.0 0.0 0.0 100.0 100.0 25.0
17661 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 125 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 133 10 1 1 5 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17661 134 10 1 2 2 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
17661 139 10 2 3 0 1 1 0 33.3 0.0 12.5 100.0 100.0 66.7
17661 140 9 1 0 7 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 142 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 150 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17823 115 4 1 3 0 0 2 0 66.7 0.0 0.0 100.0 100.0 33.3
17841 114 13 4 4 2 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 116 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 118 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17895 106 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17895 114 257 1 0 2 8 0 1 0.0 100.0 3.1 100.0 0.0 100.0
17895 121 6 1 0 2 2 0 1 0.0 100.0 40.0 100.0 0.0 100.0
17895 132 2 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17895 134 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18021 113 83 1 20 4 1 19 0 95.0 0.0 1.2 100.0 100.0 5.0
18021 116 11 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18093 117 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 104 28 1 0 14 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 121 5 1 1 1 3 0 0 0.0 0.0 75.0 100.0 100.0 100.0
18123 122 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 123 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 126 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 136 5 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18234 106 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 105 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 116 11 2 7 0 0 5 0 71.4 0.0 0.0 100.0 100.0 28.6
18312 120 2 2 2 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 126 6 3 3 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
18717 111 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 128 138 2 1 4 2 0 1 0.0 50.0 1.5 100.0 50.0 100.0
18717 129 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18717 138 8 1 1 0 4 0 0 0.0 0.0 57.1 100.0 100.0 100.0
18717 146 11 2 1 2 2 0 1 0.0 50.0 22.2 100.0 50.0 100.0
21228 106 126 1 0 33 1 0 1 0.0 100.0 .8 100.0 0.0 100.0
21435 124 26 1 1 1 12 0 0 0.0 0.0 48.0 100.0 100.0 100.0
21477 115 110 2 0 31 0 0 2 0.0 100.0 0.0 100.0 0.0 100.0
21477 145 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0

15

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

21477 150 5 1 1 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21477 180 16 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 185 11 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
21477 187 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 193 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 195 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21879 108 17 1 8 0 1 7 0 87.5 0.0 6.3 100.0 100.0 12.5
21879 109 6 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21879 131 3 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0

D. strict-red/strict-green

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

3474 109 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
13455 104 55 2 8 8 0 8 2 100.0 100.0 0.0 100.0 0.0 0.0
15753 126 15 3 0 9 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
15828 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16560 104 8 2 0 2 3 0 2 0.0 100.0 50.0 100.0 0.0 100.0
16560 119 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16560 122 3 3 0 3 0 0 3 0.0 100.0 100.0 100.0 0.0 100.0
16788 107 29 2 0 3 5 0 2 0.0 100.0 18.5 100.0 0.0 100.0
16788 109 7 1 2 3 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16788 130 19 1 0 2 6 0 1 0.0 100.0 33.3 100.0 0.0 100.0
16788 135 5 1 0 1 2 0 1 0.0 100.0 50.0 100.0 0.0 100.0
16830 108 12 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16830 110 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16830 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 116 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 120 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 155 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 156 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 160 5 1 0 1 4 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 180 5 2 4 1 0 3 1 75.0 50.0 0.0 100.0 50.0 25.0
16899 113 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 115 21 2 9 4 0 7 0 77.8 0.0 0.0 100.0 100.0 22.2
16953 116 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 123 19 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17082 108 6 1 0 2 1 0 1 0.0 100.0 20.0 100.0 0.0 100.0
17094 107 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 111 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 115 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 118 33 1 0 9 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17094 120 17 3 0 11 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
17094 121 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 125 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 132 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17136 112 11 2 0 4 4 0 2 0.0 100.0 44.4 100.0 0.0 100.0
17283 110 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 148 3 1 0 3 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17448 117 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 121 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 141 14 6 1 9 0 0 5 0.0 83.3 0.0 100.0 16.7 100.0
17448 144 3 2 1 1 0 1 2 100.0 100.0 0.0 100.0 0.0 0.0

16

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

17661 108 16 1 2 2 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
17661 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 125 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 133 10 1 1 5 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17661 134 10 1 0 4 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 139 10 2 2 1 1 0 0 0.0 0.0 12.5 100.0 100.0 100.0
17661 140 9 1 0 7 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 142 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 150 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17823 115 4 1 0 3 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17841 114 13 4 4 2 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 116 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17841 118 10 4 4 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
17895 106 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17895 114 257 1 0 2 8 0 1 0.0 100.0 3.1 100.0 0.0 100.0
17895 121 6 1 0 2 2 0 1 0.0 100.0 40.0 100.0 0.0 100.0
17895 132 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17895 134 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18021 113 83 1 20 4 1 19 0 95.0 0.0 1.2 100.0 100.0 5.0
18021 116 11 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18093 117 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 104 28 1 0 14 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 121 5 1 0 2 3 0 1 0.0 100.0 75.0 100.0 0.0 100.0
18123 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18123 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18123 126 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 136 5 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18234 106 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18312 105 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 116 11 2 2 5 0 1 1 50.0 50.0 0.0 100.0 50.0 50.0
18312 120 2 2 1 1 0 0 1 0.0 50.0 100.0 100.0 50.0 100.0
18312 126 6 3 3 1 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
18717 111 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 128 138 2 1 4 2 0 1 0.0 50.0 1.5 100.0 50.0 100.0
18717 129 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18717 138 8 1 0 1 4 0 1 0.0 100.0 57.1 100.0 0.0 100.0
18717 146 11 2 0 3 2 0 2 0.0 100.0 22.2 100.0 0.0 100.0
21228 106 126 1 0 33 1 0 1 0.0 100.0 .8 100.0 0.0 100.0
21435 124 26 1 0 2 12 0 1 0.0 100.0 48.0 100.0 0.0 100.0
21477 115 110 2 0 31 0 0 2 0.0 100.0 0.0 100.0 0.0 100.0
21477 145 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 150 5 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 180 16 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 185 11 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 187 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
21477 193 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 195 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
21879 108 17 1 1 7 1 0 0 0.0 0.0 6.3 100.0 100.0 100.0
21879 109 6 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21879 131 3 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0

E. simpleCLASSIFIER

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

3474 109 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
13455 104 55 2 12 4 0 12 2 100.0 100.0 0.0 100.0 0.0 0.0
15753 126 15 3 0 9 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
15828 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16560 104 8 2 0 2 3 0 2 0.0 100.0 50.0 100.0 0.0 100.0

17

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

16560 119 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16560 122 3 3 0 3 0 0 3 0.0 100.0 100.0 100.0 0.0 100.0
16788 107 29 2 7 1 0 7 2 100.0 100.0 0.0 100.0 0.0 0.0
16788 109 7 1 2 3 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16788 130 19 1 0 2 6 0 1 0.0 100.0 33.3 100.0 0.0 100.0
16788 135 5 1 0 1 2 0 1 0.0 100.0 50.0 100.0 0.0 100.0
16830 108 12 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16830 110 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
16830 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 116 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16830 120 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
16836 155 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 156 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
16836 160 5 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16836 180 5 2 4 1 0 3 1 75.0 50.0 0.0 100.0 50.0 25.0
16899 113 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 115 21 2 13 0 0 11 0 84.6 0.0 0.0 100.0 100.0 15.4
16953 116 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
16953 123 19 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17082 108 6 1 0 2 1 0 1 0.0 100.0 20.0 100.0 0.0 100.0
17094 107 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 111 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 113 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 115 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 118 33 1 9 0 0 9 1 100.0 100.0 0.0 100.0 0.0 0.0
17094 120 17 3 0 11 0 0 3 0.0 100.0 0.0 100.0 0.0 100.0
17094 121 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 122 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 125 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17094 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17094 132 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17136 112 11 2 0 4 4 0 2 0.0 100.0 44.4 100.0 0.0 100.0
17283 110 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 120 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17283 148 3 1 0 3 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17448 117 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 121 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 129 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17448 141 14 6 4 6 0 3 5 75.0 83.3 0.0 100.0 16.7 25.0
17448 144 3 2 1 1 0 1 2 100.0 100.0 0.0 100.0 0.0 0.0
17661 108 16 1 2 2 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
17661 119 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 125 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
17661 133 10 1 3 3 0 2 0 66.7 0.0 0.0 100.0 100.0 33.3
17661 134 10 1 2 2 0 2 1 100.0 100.0 0.0 100.0 0.0 0.0
17661 139 10 2 2 1 1 0 0 0.0 0.0 12.5 100.0 100.0 100.0
17661 140 9 1 3 4 0 3 1 100.0 100.0 0.0 100.0 0.0 0.0
17661 142 2 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17661 150 2 1 0 1 1 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17823 115 4 1 0 3 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17841 114 13 4 6 0 0 2 0 33.3 0.0 0.0 100.0 100.0 66.7
17841 116 10 4 5 0 0 1 0 20.0 0.0 0.0 100.0 100.0 80.0
17841 118 10 4 5 0 0 1 0 20.0 0.0 0.0 100.0 100.0 80.0
17895 106 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
17895 114 257 1 0 10 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17895 121 6 1 0 2 2 0 1 0.0 100.0 40.0 100.0 0.0 100.0
17895 132 2 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
17895 134 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18021 113 83 1 21 3 1 20 0 95.2 0.0 1.2 100.0 100.0 4.8

18

Student VS |∆| #FIC #Red #Yellow #Green #FP #FN %FP %FN Recall
Green

Prec.
Green

Recall
Red

Prec.
Red

18021 116 11 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18093 117 3 1 0 1 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 104 28 1 0 14 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18123 121 5 1 0 2 3 0 1 0.0 100.0 75.0 100.0 0.0 100.0
18123 122 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18123 123 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18123 126 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18123 136 5 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
18234 106 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
18312 105 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18312 116 11 2 2 5 0 1 1 50.0 50.0 0.0 100.0 50.0 50.0
18312 120 2 2 1 1 0 0 1 0.0 50.0 100.0 100.0 50.0 100.0
18312 126 6 3 4 0 0 1 0 25.0 0.0 0.0 100.0 100.0 75.0
18717 111 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 114 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
18717 128 138 2 3 4 0 2 1 66.7 50.0 0.0 100.0 50.0 33.3
18717 129 2 1 2 0 0 1 0 50.0 0.0 0.0 100.0 100.0 50.0
18717 138 8 1 0 1 4 0 1 0.0 100.0 57.1 100.0 0.0 100.0
18717 146 11 2 0 3 2 0 2 0.0 100.0 22.2 100.0 0.0 100.0
21228 106 126 1 0 33 1 0 1 0.0 100.0 .8 100.0 0.0 100.0
21435 124 26 1 0 2 12 0 1 0.0 100.0 48.0 100.0 0.0 100.0
21477 115 110 2 0 31 0 0 2 0.0 100.0 0.0 100.0 0.0 100.0
21477 145 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 150 5 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 180 16 1 0 5 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 185 11 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0
21477 187 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
21477 193 1 1 1 0 0 0 0 0.0 0.0 100.0 100.0 100.0 100.0
21477 195 1 1 0 1 0 0 1 0.0 100.0 100.0 100.0 0.0 100.0
21879 108 17 1 1 7 1 0 0 0.0 0.0 6.3 100.0 100.0 100.0
21879 109 6 1 1 0 0 0 0 0.0 0.0 0.0 100.0 100.0 100.0
21879 131 3 1 0 2 0 0 1 0.0 100.0 0.0 100.0 0.0 100.0

19

	Introduction
	Example of our Approach
	Definitions
	Classifying Tests and Changes
	Determining Committable Changes

	Implementation and Evaluation
	Case Study 1: Student Projects
	Case Study 2: Daikon
	Assessment

	Related Work
	Conclusions
	References
	relaxed-red/relaxed-green
	strict-red/relaxed-green
	relaxed-red/strict-green
	strict-red/strict-green
	simpleClassifier

