
Change Impact Analysis for Object-Oriented Programs

Barbara G. Ryder� and Frank Tip
IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
ryder@cs.rutgers.edu, tip@watson.ibm.com

ABSTRACT
Small changes can have major and nonlocal e�ects in object-
oriented languages, due to the use of subtyping and dynamic
dispatch. This complicates life for maintenance program-
mers, who need to �x bugs or add enhancements to systems
originally written by others. Change impact analysis pro-
vides feedback on the semantic impact of a set of program
changes. This analysis can be used to determine the re-
gression test drivers that are a�ected by a set of changes.
Moreover, if a test fails, a subset of changes responsible for
the failure can be identi�ed, as well as a subset of changes
that can be incorporated safely without a�ecting any test
driver.

1. INTRODUCTION
Object-oriented programming languages present many

challenges for program understanding. The extensive use
of subtyping and dynamic dispatch make understanding the
ow of values and control a nontrivial task. Moreover, small
source code changes can have unexpected and nonlocal ef-
fects. For example, adding a method to an existing class may
a�ect the dispatch behavior of virtual method calls through-
out the program. Addition of a new statement can cause a
new receiver type to reach a virtual call site and thereby
result in a call to a di�erent callee, arbitrarily far from the
added new. This nonlocality of change impact is qualita-
tively di�erent and more important for object-oriented pro-
grams than for imperative programs; for example, in C pro-
grams a precise call graph can be derived from syntactic
information alone, except for the typically few calls through
function pointers. As a result, maintenance programmers,
who need to �x bugs or add enhancements to object-oriented
systems are often hesitant to make invasive changes because
of the unforeseen e�ects that these changes might have.
This paper is concerned with change impact analysis, a

collection of techniques for determining the e�ects of a set

�On sabbatical at IBM T.J. Watson 2000{2001 from Rutgers
University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’01,June 18-19, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-413-4/01/0006 ...$5.00.

of source code changes. In this approach, the �rst step con-
sists of mapping the source code changes to a set of atomic
changes. In order to keep our analysis simple and scalable,
we use classes, methods, �elds and their interrelationships
as the atomic units of change. Furthermore, a partial or-
der between these atomic changes is determined. Intuitively,
this partial order captures dependences between the changes
that must be respected so as to create a syntactically valid
program. Then, for a given set A of atomic changes, and
a given set T of test drivers that exercise parts of the pro-
gram's functionality, a static analysis is performed to deter-
mine:

� A subset T 0 of the test drivers in T that are potentially
a�ected by changes in A. This information can be used
for regression test selection [10].

� A subset A0 of the changes in A that may a�ect a spe-
ci�c test driver t in T . This allows programmers to
ignore any change that is not involved in t's failure.
Moreover, we introduce a notion of dependence among
atomic changes that enables one to construct compil-
able programs that incorporate some, but not all the
changes in A0.

� A subset of changes in A that do not a�ect any test
in T . These changes can be incorporated immediately,
without breaking any test.

� Coverage information that informs the programmer
about code not yet covered by tests that can serve
as a basis for creating new tests.

We use call graphs as the basis for the above analysis. Re-
cent work on call graph construction algorithms by one of
the authors [13] has led us to believe that call graphs can
be computed precisely and eÆciently enough to support the
above analyses in an interactive tool setting.
The long-term goal of our project is to incorporate change

impact analysis into an existing IDE such as IBM's Visu-
alAge Java1. This will be part of a larger e�ort to provide
analysis-based support for refactoring [4], program under-
standing, and regression testing. This project is currently
in the design stage, and the present paper focuses primarily
on algorithmic and architectural aspects.

2. MOTIVATING EXAMPLE
The Java classes in Figure 1(a) will be used as a

running example to illustrate our notion of change im-
pact analysis. The example consists of �ve classes:

1See www.ibm.com/software/ad/vajava.

class Person f
private String name;
Person(String n)f name = n; g
public String getName() f return name;g
public String toString()f return name; g

g
class Student extends Person f

private Set courses;
Student(String name)f super(name); courses = new HashSet(); g
public void addCourse(Course c)f courses.add(c); g
public int totalCredits()f

int sum = 0;
for (Iterator en=courses.iterator(); en.hasNext();)f

Course c = (Course)en.next(); sum += c.getCredits();
g
return sum;

g
g
class Professor extends Person f

private String department, office;
private Set teaching;
Professor(String name, String d, String off)f

super(name); department = d;
office = off; teaching = new HashSet();

g
public void addCourse(Course c)f teaching.add(c); g
public int load()f return teaching.size(); g
public String toString()f

return (super.toString() + ", office at " +
office + " department is " + department);

g
g
class Course f

private String id; private int credits;
private Set students; private Professor p;
Course(String n; Professor pp; int c)f

id = n; p = pp; credits = c; students = new HashSet();
g
public void addStudent(Student x)fstudents.add(x);g
public String getId()f return id; g
public HashSet getStudentsf return students; g
public Professor getProfessor()f return p; g
public void setProfessor(Professor pp)f p = pp; g
public int getCredits()f return credits; g

g
class University f

private Set people;
University()f people = new HashSet(); g
public Set getPeople()f return people; g
public void addPerson(Person p)f people.add(p);g
public Professor findProfessor(String name)f

for (Iterator en = people.iterator(); en.hasNext();)f
Person p = (Person)en.next();
if (p instanceof Professor && name.equals(p.getName()))

return (Professor)p;
g
return null;

g
public Student findStudent(String name)f

for (Iterator en = people.iterator(); en.hasNext();)f
Person p = (Person)en.next();
if (p instanceof Student && name.equals(p.getName()))

return (Student)p;
g
return null;

g
public void assignProf(Professor p, Course c)f

p.addCourse(c); c.setProfessor(p);
g
public void enrollinCourse(Student s, Course c)f

s.addCourse(c); c.addStudent(s);
g

g

class TestA f
public static void main(String args[])f

University u = new University();
Professor p1 = new Professor("Barbara Ryder","DCS","CORE 311");
u.addPerson(p1);
Course c1 = new Course("100", p1,4);
University.assignProf(p1,c1);
p1 = new Professor("Frank Tip", "DCS", "CORE 320");
u.addPerson(p1);
Course c2 = new Course("200",p1,3);
u.assignProf(p1,c2);
Professor q = u.findProfessor("Donald Smith");
if (q != null)f

System.out.println("Professor Donald Smith found");
System.out.println(q.toString() +

" is teaching " + q.load() + " courses.");
g else f

System.out.println("Professor Donald Smith not found");
g
Professor p = u.findProfessor("Barbara Ryder");
if (p != null)f

System.out.println("Professor Barbara Ryder found");
System.out.println(p.toString() +

" is teaching " + p.load() + " courses.");
g else f

System.out.println("Professor Barbara Ryder not found");
g

g
g
class TestB f

public static void main(String args[])f
University u = new University();
u.addPerson(new Professor("Barbara Ryder","DCS","CORE 311"));
u.addPerson(new Professor("Frank Tip", "DCS", "CORE 320"));
u.addPerson(new Student("Atanas Rountev"));
u.addPerson(new Student("Matt Arnold"));
String s = "";
for (Iterator en = u.getPeople().iterator(); en.hasNext();)f

Person p = (Person)en.next(); s += p.toString();
g
System.out.println("University people are " + s);

g
g
class TestC f

public static void main(String args[])f
University u = new University();
Student s1 = new Student("Atanas Rountev");
Student s2 = new Student("Matt Arnold");
u.addPerson(s1); u.addPerson(s2);
Course c1 = new Course("100",null,4);
Course c2 = new Course("200",null,3);
u.enrollinCourse(s1,c1);
u.enrollinCourse(s1,c2);
u.enrollinCourse(s2,c1);
Student s3 = u.findStudent("Matt Arnold");
Student s4 = u.findStudent("Ana Milanova");
if (s3 != null)f

System.out.println(s3.toString() + " is taking"+
s3.totalCredits() + " credits");

g else f
System.out.println("Matt Arnold is not a student");

g
if (s4 != null)f

System.out.println(s4.toString() + " is taking " +
s4.totalCredits() + " credits");

g else f
System.out.println("Ana Milanova is not a student");

g
g

g

(a) (b)

Figure 1: University example. (a) Classes Person, Student Professor, Course, and University. (b) Test drivers
TestA, TestB, and TestC.

Course, Person, Professor, Student and University. A
University is populated with Persons with the appro-
priate attributes (e.g., oÆces, departments). Professors
are assigned courses to teach by way of a method
University.assignProf() and students are enrolled in
courses using a method University.enrollinCourse().
Two methods University.findProfessor() and
University.findStudent() are provided to search for
professors and students by their name.
Figure 1(b) shows three test driver classes TestA, TestB,

and TestC. TestA tests the functionality for �nding a par-
ticular professor and printing his or her course load. TestB
tests the ability to print out all Persons currently at the Uni-
versity. TestC �nds a particular student and prints his or
her credit load. Each of the test driver classes together with
the �ve university classes form a coherent Java program.
Since we are studying the impact of changes, we need to

posit some modi�cations to the original �ve class system.
The �rst change is caused by the university adopting an
identi�cation number for its students that should always be
presented along with the other information associated with a
student. This requires the addition of a �eld Student.idNum
to class Student to contain the ID number, a change to the
constructor of Student to initialize this �eld, and the addi-
tion of a method Student.toString() to print the student
number. Note that some changes are needed in test drivers
TestB and TestC in order to create Student objects properly.
Considering the impact of the �rst change, note that the

calls to toString() in TestB and TestC will dispatch to
a new method for objects of type Student. Clearly, these
tests must be rerun to determine if the altered behavior
matches the programmer's expectations. Note how this sim-
ple change illustrates the nonlocality of change impact in
object-oriented programs: neither TestB nor TestC has any
relation to Student in the class hierarchy, and the a�ected
calls to toString() are arbitrarily far away from other meth-
ods of Student in the call graph!
The second change occurs due to a new university pol-

icy that allows for the association of any person with a de-
partment (as opposed to only professors). This involves:
(i) adding �eld department to class Person and removing
it from class Professor, (ii) adding a second constructor
to class Person that initializes the department as well as
the name, (iii) changing Professor's constructor (remov-
ing the assignment to Professor.department, and pass-
ing d as an extra argument in the super-call), (iv) chang-
ing Person.toString() to print out the name and de-
partment if the latter is available, and otherwise only the
name, and (v) changing Professor.toString() (removing
the printing of Professor.department). Due to the change
in Person.toString(), all test drivers now execute changed
code; however, the output produced by each test case is the
same as before.
Finally, a third system change occurs when the uni-

versity caps course enrollment at a maximum of 50 stu-
dents. This is implemented by inserting an if-statement
in University.enrollinCourse(). Only TestC, which calls
this method, is a�ected.

3. CHANGES
Our analysis assumes the existence of an original program

P and a changed program P 0 derived from P . Both P and
P 0 are assumed to be syntactically correct and compilable,

(AC) Add an empty class
(DC) Delete an empty class
(AM) Add an empty method
(DM) Delete an empty method
(CM) Change body of method
(LC) Change virtual method lookup
(AF) Add a �eld
(DF) Delete a �eld

Table 1: Categories of atomic changes.

but we impose no restrictions on the number or the nature
of the changes that transform P into P 0. We assume that
an IDE provides information about the �les, classes, and
methods that have been edited. Alternatively, one can rely
on a utility like di� to obtain this information.

3.1 Atomic Changes
A key aspect of our approach is the ability to transform

source code edits into a set of atomic changes, as de�ned in
Table 1. These have two important characteristics. First,
their granularity matches our analysis; that is, our analysis
will not be able to produce more precise results if a �ner-
grained (e.g., statement-oriented) notion of atomic change is
used. Second, any source code edit can be broken up into a
unique set of atomic changes. Most of the changes in Table 1
are self-explanatory, except for CM and LC. CM captures
any kind of change to a method body, including (i) adding
a body to a previously abstract method, (ii) removing the
body of a non-abstract method and making it abstract, and
(iii) making any number of statement-level changes inside
a method body. The LC category \abstracts" any kind of
source code change that a�ects dynamic dispatch behavior2.
LC changes can be caused by adding or deleting meth-

ods, and by adding or deleting inheritance relations. The
computation of LC changes is somewhat involved, and will
be discussed below in Section 3.2.
For a given source code edit, we will use the labels of Ta-

ble 1 to denote the sets of atomic changes derived from that
edit. In other words, AM, CM, and DM denote sets of
added, changed, and deleted methods, respectively. Simi-
larly, AF and DF denote added and deleted �elds, and AC
and DC denote sets of added and deleted classes, respec-
tively.
We will ignore several kinds of source code level changes

that have no direct semantic impact apart from control-
ling visibility and thereby compilability. These include
changes to access rights of classes, methods, and �elds, addi-
tion/deletion of comments, and addition/deletion of import
statements.

3.2 Changes affecting method dispatch
As mentioned, method dispatch behavior may be a�ected

by several kinds of edits. Before we can reason about changes
in method dispatch behavior, we formalize the method dis-
patch process using a function Lookup. Lookup takes two ar-

2Some source changes correspond to more than one atomic
change. For example, the addition of an empty method
may imply several atomic changes, of types AM and LC.
Here, the AM change denotes the added method as a node
in the call graph of P 0, and the LC change(s) speci�es
the change(s) in dynamic dispatch behavior caused by this
method addition.

Lookup = f hC;A:m;B:mi j class A contains virtual method m; C��B��A;

class B contains virtual method m;
there is no class B0 that contains method m such that C��B0<�B g

LC = f ha; bi j ha; b; ci 2 ((Lookupold � Lookupnew) [(Lookupnew � Lookupold)) g

SameLookup(B; f()) = f hC; Y:f(); V:f()i j hB; Y:f(); V:f()i 2 Lookupold; hC; Y:f(); V:f()i 2 Lookupold; C�
�B��Y g

Figure 2: De�nitions of Lookup, LC, and SameLookup.

guments, the run-time type of the receiver and the method
that is statically referred to in the method call, and returns
the method de�nition that is invoked by the virtual dis-
patch mechanism3. If we consider the lookup function to
be a map, that is a set of triples h runtimeReceiverType,
staticMethodSignature, actualMethodBound i, then some of
the values corresponding to our original hierarchy of Figure 1
are:
h Person, Person.toString(), Person.toString() i
h Student, Person.toString(), Person.toString() i
h Professor, Person.toString(), Professor.toString() i
h Professor, Professor.toString() , Professor.toString() i
h Person, Person.getName(), Person.getName() i
h Professor, Person.getName(), Person.getName() i
h Student, Person.getName(), Person.getName() i

Using the inheritance operators of Table 2, the com-
plete Lookup map can be de�ned as the set of all tuples
h C, A:m, B:m i such that A:m is a method declared in the
hierarchy, C �� A, and B is nearest superclass of C contain-
ing a de�nition of method m. Figure 2 shows the de�nition
of Lookup.
Having de�ned Lookup, we now turn our attention to

changes in lookup behavior. For convenience, we will use
Lookupold and Lookupnew to refer to the set of Lookup tu-
ples before and after the edit, respectively. We can now
de�ne LC as a set of pairs h C, A:m() i, indicating that the
dynamic dispatch behavior for a call to A:m() on an object
with run-time type C has changed. The de�nition of LC is
also given in Figure 2.
It is possible to compute LC by directly following the def-

inition, and traversing the class hierarchy for each run-time
type and each method signature. However, re-traversing the
entire hierarchy after each edit seems unnecessarily expen-
sive, since it is likely that large parts of the Lookup map
are una�ected by an edit. We therefore plan to pursue an
approach where the Lookup map is updated after each edit
instead of being recomputed from scratch. In the remainder
of this section, we will study a number of typical edits, the
corresponding changes to Lookup, and the e�ect on LC. The
edits usually require removing some invalidated tuples from
Lookup, and adding some newly created tuples. For exam-

3This only applies to dynamically dispatched (virtual) meth-
ods. Hence, Lookup and LC do not contain tuples for con-
structors and static methods.

A < B A is a direct descendent of B
A � B A is a direct descendent of B, or A = B
A �� B B is an ancestor of A, or A = B
A <� B B is an ancestor of A, but B 6= A

Table 2: Notation for inheritance relations.

ple, when a method B:f() is added, we may remove some
tuples from Lookupold that resolve references with run-time
types corresponding to the inheritance tree rooted at B to
actual methods de�ned in ancestors of B. Then, new tuples
are added that express how some references with run-time
type B (or a subtype of B) are resolved in the updated
hierarchy to the newly added B:f(). Table 3 contains a
summary of several edits and their impact on LC. In other
words, the table states how, for several edits, Lookupnew
can be computed directly from Lookupold without referring
to the hierarchy. The remainder of this section will give
examples of the edits shown in Table 3.
We conclude this discussion by introducing an auxiliary

function SameLookup, which will be used to de�ne the im-
pact of several of the edits in Figure 3. SameLookup takes
two arguments, a run-time type B, and a method signature
f(), and computes the subset of Lookupold comprising all
tuples h C, Y:f(), V:f() i 2 Lookupold for which there is a
corresponding element h B, Y:f(), V:f() i 2 Lookupold. In-
formally, the purpose of SameLookup is to identify all calls
that are resolved the same as a call to a method f() on a
B-object. The de�nition of SameLookup can be found in
Figure 2.

3.2.1 Edit I: method addition
In this example, we study the impact of the addition of

a method getName() to class Professor of Figure 1. This
change will result in the deletion of element:

h Professor, Person.getName(), Person.getName() i

from Lookupold, because invoking method Person.getName()
on an object of type Professor will no longer resolve to
Person.getName(). Observe that new elements have to be
added as well: invoking Person.getName() on a Professor-
object will resolve to Professor.getName(), and invoking
Professor.getName() on a Professor-object will resolve to
Professor.getName() as well. Hence, the following tuples
need to be added:

h Professor, Person.getName(), Professor.getName() i
h Professor, Professor.getName(), Professor.getName() i

Consequently, for this edit we have that:

LC = f hProfessor; Person.getName()i;
hProfessor; Professor.getName()i g

Table 3 states how method addition a�ects Lookup in the
presence of overriding de�nitions of the added method in
subclasses.

3.2.2 Edit II: method deletion
We will now consider the impact of deleting method

Professor.toString() on Lookup. First, we need to re-

edit deleted tuples added tuples
add method
B:f()

SameLookup(B; f()) f hC;X:f(); B:f()i j hC;X:f(); Y:f()i 2 SameLookup(B; f());
C��B<�Y��X g

f hC;B:f(); B:f()i j f is not de�ned in any B0; C��B0��B g
f hE;B:f ;D:fi j hE;X:f();D:f()i 2 Lookupold; E�

�D<�B g
delete method
B:f()

f h C, A:f, B:f i jC ��B ��A g
f h D, B:f , C:f i jD ��C ��B g

f hC;X:f(); A:f()i j hC;X:f(); B:f()i 2 Lookupold; X 6= B
A is B's closest ancestor that de�nes f(); C��B��A g

add leaf
class C

none f hC;X:f(); V:f()i j hB;X:f(); V:f()i 2 SameLookup(B; f());
C<B g

delete leaf
class C

f hC;X:f(); V:f()i j C��X��V g none

move nonempty
leaf class B
(B < A to B < D)

f hB;X:f(); Y:f()i jB<A��X;
hB;X:f(); Y:f()i 2 Lookupold g

fhB;X:f(); V:f()i j hD;X:f(); V:f()i 2 SameLookup(D; f());
f() not de�ned in class B g

fhB;X:f(); B:f()i j hD;X:f(); V:f()i 2 SameLookup(D; f());
f() is de�ned in class B g

move subtree
rooted at B
(B < A to B < D)

f hC;X:f(); Y:f()i j C��B<A��X
hC;X:f(); Y:f()i 2 Lookupold g

fhC;X:f();Q:f()i j hC;R:f(); Q:f()i 2 Lookupold; C�
�Q��R��B;

hD;X:f(); Y:f()i 2 SameLookup(D; f()); D��Y��X g
fhC;X:f(); Y:f()i j 6 9hC;R:f();Q:f()i 2 Lookupold for C��Q��R��B;

hD;X:f(); Y:f()i 2 SameLookup(D; f()); D��Y��X g

Table 3: An overview of several typical edit actions, and their impact on Lookup. From left to right, the
columns state: a description of the edit, the set of tuples removed from Lookup as a result of the edit, and
the set of tuples added to Lookup as a result of the edit, respectively. The method f in the last four rows of
the table is meant to vary over all methods that exist in the hierarchy before the edit.

move the elements of Lookup associated with invoking a
toString() method on a Professor-object:

h Professor, Person.toString(), Professor.toString() i
h Professor, Professor.toString() , Professor.toString() i

Then, we must add elements to Lookup that reect the
fact that invoking toString() on a Professor-object now
resolves to Person.toString():

h Professor, Person.toString(), Person.toString() i

Hence, we have that:

LC = f hProfessor; Person.toString()i;
hProfessor; Professor.toString()i g

Table 3 states how method deletion a�ects Lookup in the
more general case, where the deleted method is overridden
in subclasses.

3.2.3 Edit III: addition of an empty leaf class
If we add classes GradStud and UgStud to Figure 1, then

we will have GradStud < Student and GradStud <� Person
in the resulting hierarchy. In this case, new tuples will need
to be added to Lookup to reect the resolution of methods
that are de�ned in classes Person and Student on objects
of type GradStud and UgStud:

h GradStud, Person.toString(), Person.toString() i
h GradStud, Person.getName(), Person.getName() i
h GradStud, Student.addCourse(), Student.addCourse() i
h GradStud, Student.totalCredits() , Student.totalCredits() i
h UgStud, Person.toString(), Person.toString() i
h UgStud, Person.getName(), Person.getName() i
h UgStud, Student.addCourse(), Student.addCourse() i
h UgStud, Student.totalCredits() , Student.totalCredits() i

Hence, the impact on LC is as follows:

LC = f hGradStud; Person.toString()i;
hGradStud; Person.getName()i;
hGradStud; Student.addCourse()i;
hGradStud; Student.totalCredits()i;
hUgStud; Person.toString()i;
hUgStud; Person.getName()i;
hUgStud; Student.addCourse()i;
hUgStud; Student.totalCredits()i g

3.2.4 Edit IV: deletion of an empty leaf class
We will use the example program of Figure 1 augmented

with the additional classes GradStud and UgStud of Sec-
tion 3.2.3 as the basis for the next example. Here, we
consider the deletion of class UgStud. This implies that all
tuples whose run-time type component is UgStud will be re-
moved from Lookup, i.e.:

h UgStud, Person.toString(), Person.toString() i
h UgStud, Person.getName(), Person.getName() i
h UgStud, Student.addCourse(), Student.addCourse() i
h UgStud, Student.totalCredits(), Student.totalCredits() i

Hence, the impact on LC is:

LC = f hUgStud; Person.toString()i;
hUgStud; Person.getName()i;
hUgStud; Student.addCourse()i;
hUgStud; Student.totalCredits()i g

3.2.5 Edit V: move a class
We will now consider moving a class in the hierarchy using

the example program of Figure 1. In order to accommodate
adjuncts in our University model, we will create a new class
Teacher as a child of Person, add Adjunct as its child, and
then move Professor to be its second child. We can add
Teacher and Adjunct directly using the transformations of
Section 3.2.3. Teacher will be added as an empty leaf class

and therefore, the changes to Lookup will consist of adding
tuples to represent those functions inherited from Person:

h Teacher, Person.getName(), Person.getName() i
h Teacher, Person.toString(), Person.toString() i, etc.

Similar updates will be necessary to add Adjunct. However,
to move Professor to become a child of Teacher, we cannot
use this transformation because it assumes the class to be
empty, and the existing Professor class is not. In general,
when we move a leaf class B from being a child of A to
being a child of D, we must remove all tuples corresponding
to methods inherited through A and add all newly inherited
methods from D, the new parent of B. When B is the root
of a subtree in the inheritance hierarchy, we must be careful
not to lose existing overrides of functions within the subtree
rooted at B. Before moving the Professor class, Lookupold
contains the following tuple due to inheritance from Person:

h Professor, Person.getName(), Person.getName() i

When Professor becomes a child of Teacher, we must
remove this tuple. Then, we need to add tuples to
Lookupnew that correspond to methods inherited through
Teacher. Assume we have added some methods to Teacher
before moving Professor to be its child. If a method
Teacher.numCourses() exists, then the set of added tuples
includes:

h Professor, Teacher.numCourses() , Teacher.numCourses() i
h Professor, Person.getName(), Person.getName() i, etc.

Notice that we have deleted and then added the following
tuple in this update:

h Professor, Person.getName(), Person.getName() i

This happens because Professor's old and new parents
share a common ancestor Person, from which both inherit
Person.getName(). In addition, notice that we have not
added or deleted:

h Professor, Professor.toString() , Professor.toString() i

because method calls that involve a method inside class
Professor on an object with run-time type Professor are
not a�ected by the move of class Professor to its new loca-
tion in the hierarchy.
The example that we just discussed corresponds to the

edit move nonempty leaf class B in Table 3. The edit move
subtree rooted at B in Table 3 is handled similarly, but up-
dates must account in addition for changes in dynamic dis-
patch for subclasses of B.

3.3 Ordering atomic changes
Changes may depend on other changes, both syntactically

and semantically. For the purposes of this paper, we will
only consider syntactic dependences that must be satis�ed
to ensure compilability. Examples of syntactic dependences
are that one cannot extend a class that does not exist, or call
a method that has not been de�ned yet. An example of a se-
mantic dependence is where a new method m only exhibits
correct behavior in the presence of a changed version of a
method m0 that it calls. Section 5 will present several sce-
narios in which a change impact analysis tool that is aware
of dependences between changes can provide valuable sup-
port to users when a test case fails after a set of changes is
applied. This ability to explore partial edits of the program

is quite useful.
We express syntactic dependence between changes using a

partial ordering � on atomic changes (with transitive closure
��). For a given set A of atomic changes that transforms
P into P 0, � can be used to determine consistent subsets
A0 of A such that applying A0 to P results in a valid (i.e.,
compilable) program P 00 that incorporates some, but not all
of the changes in P 0. A subset A0 of the full set of atomic
changes A is consistent if:

8a0 2 A such that a0 ��

a; a 2 A
0) a

0 2 A
0

We plan to compute the ordering between atomic changes
automatically, without intervention by the programmer.
Computation of this ordering requires determining the \syn-
tactic requirements" of program fragments referenced in an
atomic change. While we do not expect this to be diÆcult,
a detailed formalization is future work.

3.4 Deriving atomic changes
Breaking up source code edits into atomic changes is fairly

straightforward. Due to space limitations we only demon-
strate this process by example.
With respect to our example in Figure 1, the �rst edit

described in Section 2 was the addition of a student ID
number to the program. This edit corresponds to the
following atomic changes: c1 � Student.idNum 2 AF,
c2 � Student.Student() 2 CM, c3 � Student.toString()
2 AM, c4 � Student.toString() 2 CM, c5 � h
Student, Student.toString() i 2 LC, and c6 � h Student,
Person.toString() i 2 LC. Here, we have that c1 � c2,
c1 � c3 � c4, c3 � c5, and c3 � c6.
The second edit allowed each person to be aÆli-

ated with a department. This edit corresponds to the
following atomic changes: c7 � Person.department
2 AF, c8 � Professor.department 2 DF, c9 �
Person.Person(String,String) 2 AM, c10 �
Person.Person(String,String) 2 CM, c11 �
Professor.Professor() 2 CM, c12 � Person.toString()
2 CM, and c13 � Professor.toString() 2 CM. These
changes are ordered as follows: c7 � c10, c7 � c12, c9 � c10,
and c9 � c11.
The third edit implements the new rule that caps course

enrollment at 50 students. This corresponds to one atomic
change, c14 � University.enrollInCourse() 2 CM.

4. CHANGE IMPACT ANALYSIS
We will assume that associated with program P is a set

of test drivers T = t1; � � � ; tn. Each test driver ti exer-
cises a subset Nodes(P; ti) of P 's methods, and a subset
Edges(P; ti) of calling relationships between P 's methods.
Likewise, Nodes(P 0; ti) and Edges(P 0; ti) form the call graph
for ti on the edited program P 0. Here, a calling relationship
between methods is assumed to be of the form A:m !C

B:n, indicating that control may ow from method A:m to
method B:n due to a virtual call to method n on an object
of type C.
We do not require full coverage (i.e., that every method

in P be exercised by at least one test driver), nor that test
drivers exercise disjoint fragments of code. However, our
analyses are likely to be most e�ective in situations where
many test drivers each exercise a small part of a system's
functionality, under approximately the above conditions.

A�ectedTests(T ;A) = f ti j ti 2 T ; Nodes(P; ti) \ (CM [DM)) 6= ; g [
f ti j ti 2 T ; n 2 Nodes(P; ti); n!BA.m 2 Edges(P; ti); hB;X:mi 2 LC; B<�A��X g

A�ectingChanges(t;A) = f a0 j a 2 Nodes(P 0; t) \ (CM [AM); a0 �� a g [
f a0 j a � hB;X:mi 2 LC; B<�A��X; n!BA.m 2 Edges(P 0; t);

for some n; A:m 2 Nodes(P 0; t); a0 �� a g

Figure 3: Change impact analysis de�nitions.

Figure 3 shows de�nitions of the two key concepts that
form the foundation of our analysis. A�ectedTests(T ,A) is
a subset of T containing only those test drivers whose be-
havior may be a�ected by changes in A. This comprises
any test driver that traverses a changed or deleted method,
as well as any test driver that contains a virtual dispatch
whose behavior may have changed. A�ectingChanges(t,A)
is a subset of the changes in A that may a�ect the behavior
of a speci�c test driver t. Observe that these de�nitions do
not rely on any particular method for determining Nodes
and Edges4. We plan to experiment with eÆcient call graph
construction algorithms such as RTA [1] and XTA [13], but
using trace information gathered at run-time is another pos-
sibility.
A�ectedTests and A�ectingChanges can be exploited for

regression test selection and fault localization as follows:

� Any test driver not in A�ectedTests(T ,A) is guaran-
teed to produce the same result after incorporating the
changes in T . Hence, only test cases in A�ectedTests
need to be re-executed and have their results examined
by the programmer.

� A�ectingChanges can be used to identify a subset of
the changes that do not a�ect any driver and that can
be incorporated safely. However, such changes may be
indicative of missing test cases, of which programmers
should be made aware.

� A�ectingChanges can provide useful information once
a test driver has failed, by allowing the programmer to
focus on failure-related changes.

Let T = f TestA; TestB; TestC g. Returning to the
�rst edit of our running example, we can see that atomic
change c2 causes the inclusion of TestB and TestC in
A�ectedTests(T; f c1; c2; c3; c4; c5; c6 g), because the method
changed by c2 (the constructor of class Student) occurs in
Nodes(P; TestB) and in Nodes(P; TestC). However, we �nd
that TestA is not a�ected by the �rst edit.
Moreover, consider the situation after all three edits have

been applied , and suppose we are interested in determin-
ing which of the atomic changes impacted TestA because
its behavior is not as expected. To answer this ques-
tion, we determine A�ectingChanges(TestA,f c1; : : : ; c14 g)
= f c7; c9; c10; c11; c12; c13 g. In other words, our techniques
can detect automatically that neither the �rst edit (adding
the student ID number) nor the third edit (limiting course
enrollment) a�ects TestA.

5. TOOL SUPPORT

4In these formulae, assume that AM, DM, CM are en-
coded as nodes in the call graph of P or P 0.

We plan to implement the concepts of Section 4 as a tool
in an IDE. Assume the user edits a program P , makes sev-
eral changes and then hits a button labeled \analyze change
impact". Our tool will determine the set of potentially af-
fected test drivers using A�ectedTests, and for each driver,
the corresponding A�ectingChanges and its consistent sub-
sets.
Scenario 1. If the programmer makes an edit that adds

functionality to the program and the set A�ectedTests is
empty, (i.e., our tool �nds no impact), then none of the
test drivers are a�ected by the edit. This might occur when
new, non-overriding methods are added, requiring new test
drivers. By displaying the edit in terms of its constituent
atomic changes, the tool will help to identify new calls and
object creations needed for testing the new code.
Scenario 2. Alternatively, our tool may �nd a nonempty

A�ectedTests set. In this case, the programmer may need
to modify an a�ected test driver, (e.g., change a method
signature) in order for it to compile with the edited pro-
gram. By displaying the A�ectingChanges set, our tool can
show method signature modi�cations (e.g., added/deleted
parameters) that need to be taken into account.
Scenario 3. After all test drivers compile, an a�ected

test driver can produce incorrect results. Assume the set of
consistent subsets of A�ectingChanges corresponding to this
driver is At. Two possible strategies can be followed to lo-
calize the fault. In the �rst strategy, the tool creates a linear
ordering of At, and elements of At are applied to P in order
until the fault is exposed. In the second strategy, binary
search is used on At to �nd the smallest set of consistent
subsets that still exhibits the fault (similar to [15]). At each
step we continue with those changes that expose the fault.
Eventually, we reach a smallest set of fault-demonstrating
changes.

6. RELATED WORK
Zeller [15] introduced the delta debugging approach for

localizing failure-inducing changes among large sets of tex-
tual changes. His approach involves partitioning changes
into subsets, executing the programs resulting from apply-
ing these subsets, and determining whether the result is
correct, incorrect, or inconclusive. EÆcient binary-search-
like techniques are used to quickly narrow down the search
space. The key di�erences with our work are that our atomic
changes and interdependences take into account program
syntax to ensure compilability. Zeller aims at scenarios
where new versions of software are supplied by a third party,
whereas we are interested in interactive settings where pro-
grammers make changes.
Change impact analysis is related both to program slic-

ing [12] and to incremental data-ow analysis [7]. Kung et
al. have described various sorts of relationships between

classes and other entities in C++ programs, and presented
a technique for determining change impact through these
relations [6].
Regression testing validates systems that evolve over time

by rerunning tests after every major edit to ensure that func-
tionality has been preserved. TestTube [3] and DejaVu [10]
were designed to diminish the cost of regression testing C
programs through analysis, and have recently been com-
pared empirically [2]. We are also interested in determining
a�ected test drivers, but we rely on method-level coverage as
opposed to module-level (TestTube) or statement-level (De-
jaVu) coverage. Our primary interest is in assisting mainte-
nance programmers with understanding the impact of their
program edits, whereas the TestTube and DejaVu projects
emphasize cost reduction for regression testing.
There has been relevant work in adapting procedural test-

ing technology to object-oriented languages. Perry and
Kaiser [8] adapted Weyuker's test adequacy rules for proce-
dural languages [14] to account for consequences of virtual
dispatch and subtyping. Initial work on data-ow testing of
object-oriented programs includes [5, 11]. Other work has
suggested selective regression testing for a class-based test
methodology [9].

7. FUTURE WORK
Future work at the conceptual level includes a formaliza-

tion of (i) deriving a set of atomic changes from a source code
edit, and (ii) computation of the ordering between atomic
changes. We intend to implement the techniques presented
in this paper, and assess their e�ectiveness in practice. We
also plan to investigate non-syntactic notions of dependence
among atomic changes, in order to reduce the number of par-
tially edited programs that a user needs to consider when
faced with a test failure.
In implementing these ideas in a refactoring/change im-

pact tool, we will explore how to best engineer the method-
ology presented for ease of use and eÆcient performance.
Of interest are actual change histories of existing object-
oriented systems, which can be examined to discern patterns
of edits (i.e., changes and refactorings) that are common.

Acknowledgments
We are grateful to the anonymous PASTE referees for their
comments.

8. REFERENCES
[1] Bacon, D. F. Fast and E�ective Optimization of

Statically Typed Object-Oriented Languages. PhD
thesis, University of California, Berkeley, Dec. 1997.

[2] Bible, J., Rothermel, G., and Rosenblum, D. A
comparative study of coarse- and �ne-grained safe
regression test selection techniques. ACM Trans. on
Software Engineering Methodology (in press).

[3] Chen, Y., Rosenblum, D., and Vo, K. Testtube: A
system for selective regression testing. In Proc. of the
16th Int. Conf. on Software Engineering (1994),
pp. 211{220.

[4] Fowler, M. Refactoring. Addison-Wesley, 1999.

[5] Harrold, M. J., and Rothermel, G. Performing
data ow testing on classes. In Proc. of the 2nd Symp.
on the Foundations of Software Engineering (1994),
pp. 154{163.

[6] Kung, D. C., Gao, J., Hsia, P., Toyoshima, Y.,
and Chen, C. On regression testing of object-oriented
programs. J. of Systems and Software 32 (1996),
21{40.

[7] Marlowe, T. J., and Ryder, B. G. An eÆcient
hybrid algorithm for incremental data ow analysis. In
Proc. of the ACM SIGPLAN/SIGACT Symp. on
Principles of Programming Languages (Jan. 1990),
pp. 184{196.

[8] Perry, D. E., and Kaiser, G. E. Adequate testing
and OO programming. J. of Object-Oriented
Programming (1990).

[9] Rothermel, G., and Harrold, M. J. Selecting
regression tests for object-oriented software. In Proc.
of the Int. Conf. on Software Maintenance (1994).

[10] Rothermel, G., and Harrold, M. J. A safe,
eÆcient regression test selection technique. ACM
Trans. on Software Engineering and Methodology 6, 2
(April 1997), 173{210.

[11] Souter, A., and Pollock, L. Omen: A strategy for
testing object-oriented software. In Proc. of ACM
SIGSOFT 2000 Int. Symp. on Software Testing and
Analysis (ISSTA) (August 2000), p. 49'59.

[12] Tip, F. A survey of program slicing techniques. J. of
Programming Languages 3, 3 (1995), 121{189.

[13] Tip, F., and Palsberg, J. Scalable
propagation-based call graph construction algorithms.
In Proc. ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA'00) (Minneapolis, MN, 2000), pp. 281{293.
SIGPLAN Notices 35(10).

[14] Weyuker, E. Axiomatizing software test data
adequacy. IEEE Trans. on Software Engineering
SE12:12 (1986), 668{675.

[15] Zeller, A. Yesterday my program worked. Today, it
does not. Why? In Proc. of the 7th European Software
Engineering Conf./7th ACM SIGSOFT Symp. on the
Foundations of Software Engineering (ESEC/FSE'99)
(Toulouse, France, 1999), pp. 253{267.

